首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An active phosphatidylinositol 3-kinase (PI3K) has been shown in nuclei of different cell types. The products of this enzyme, i.e. inositides phosphorylated in the D3 position of the inositol ring, may act as second messengers themselves. Nuclear PI3K translocation has been demonstrated to be related to an analogous translocation of a PtdIns(3,4,5)P(3) activated PKC, the zeta isozyme. We have examined the issue of whether or not in the osteoblast-like clonal cell line MC3T3-E1 there may be observed an insulin-like growth factor-I- (IGF-I) and platelet-derived growth factor- (PDGF) dependent nuclear translocation of an active Akt/PKB. Western blot analysis showed a maximal nuclear translocation after 20 min of IGF-I stimulation or after 30 min of PDGF treatment. Both growth factors increased rapidly and transiently the enzyme activity of immunoprecipitable nuclear Akt/PKB on a similar time scale and after 60 min the values were slightly higher than the basal levels. Enzyme translocation was blocked by the specific PI3K inhibitor, LY294002, as well as cell entry into S-phase. Confocal microscopy showed an evident increase in immunostaining intensity in the nuclear interior after growth factor treatment but no changes in the subcellular distribution of Akt/PKB when a LY294002 pre-treatment was administered to the cells. These findings strongly suggest that the intranuclear translocation of Akt/PKB is an important step in signalling pathways that mediate cell proliferation.  相似文献   

2.
Tricyclodecan-9-yl-xanthogenate (D609) is known for its antiviral and antitumor properties. D609 actions are widely attributed to inhibiting phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). D609 also inhibits sphingomyelin synthase (SMS). PC-PLC and/or SMS inhibition will affect lipid second messengers 1,2-diacylglycerol (DAG) and/or ceramide. Evidence indicates either PC-PLC and/or SMS inhibition affected the cell cycle and arrested proliferation, and stimulated differentiation in various in vitro and in vivo studies. Xanthogenate compounds are also potent antioxidants and D609 reduced Aß-induced toxicity, attributed to its antioxidant properties. Zn2+ is necessary for PC-PLC enzymatic activity; inhibition by D609 might be attributed to its Zn2+ chelation. D609 has also been proposed to inhibit acidic sphingomyelinase or down-regulate hypoxia inducible factor-1α; however these are down-stream events related to PC-PLC inhibition. Characterization of the mammalian PC-PLC is limited to inhibition of enzymatic activity (frequently measured using Amplex red assay with bacterial PC-PLC as a standard). The mammalian PC-PLC has not been cloned; sequenced and structural information is unavailable. D609 showed promise in cancer studies, reduced atherosclerotic plaques (inhibition of PC-PLC) and cerebral infarction after stroke (PC-PLC or SMS). D609 actions as an antagonist to pro-inflammatory cytokines have been attributed to PC-PLC. The purpose of this review is to comprehensively evaluate the literature and summarize the findings and relevance to cell cycle and CNS pathologies.  相似文献   

3.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.  相似文献   

4.
The ability of tumor promoting 12-O-tetradecanoylphorbol-13-acetate (TPA) to redistribute protein kinase C in human promyelocytic leukemic HL60 cells was investigated. It was found that TPA caused a rapid translocation (within 10 min) of protein kinase C from the cytosolic (soluble) fraction to the particulate (membrane) fraction, as determined indirectly by assaying for the enzyme activity or by immunoblotting of the enzyme protein in the isolated subcellular fractions. Immunocytochemical localization of the enzyme demonstrated directly that the TPA caused an enzyme translocation t the plasma membrane. These findings suggest that translocation to the plasma membrane of the enzyme may represent initial events related to the TPA effect on terminal differentiation of HL60 cells to monocytes/macrophages.  相似文献   

5.
L Xia  D Zhang  C Wang  F Wei  Y Hu 《FEBS letters》2012,586(19):3341-3348
The precise mechanism of how TNF-α promotes osteoclast formation is not clear. Previous reports show TNF-α targets molecules that regulate calcium signaling. Inositol-1,4,5-trisphosphate receptors (IP3Rs) are important calcium channel responsible for evoking intracellular calcium oscillation. We found that TNF-α increased the expression of IP3R1 and promoted osteoclastogenesis in RANKL-induced mouse BMMs. Phosphatidylcholine-specific phospholipase C (PC-PLC) specific inhibitor D609 eliminated the upregulation of IP3R1 by TNF-α, and decreased the autoamplification of nuclear factor of activated T-cells 1 (NFATc1), thus resulted in less osteoclasts formation. However, D609 did not inhibit RANKL-induced osteoclastogenesis. Our data suggest TNF-α promotes RANKL-induced osteoclastogenesis, at least partially, through PC-PLC/IP3R1/NFATc1 pathway.  相似文献   

6.
Secretion of proinflammatory cytokines by lipopolysaccharide (LPS) activated vascular endothelial cells (VECs) contributes substantially to the pathogenesis of several inflammatory diseases such as atherosclerosis and septic shock. However, the mechanisms involved in this process are not well understood. Here, we investigated the role of phosphatidylcholine-specific phospholipase C (PC-PLC) in LPS-induced IL-8 and MCP-1 production in VECs. The results showed that LPS elevated the level of PC-PLC and the production of IL-8 and MCP-1 in Human umbilical vein vascular endothelial cells (HUVECs). Blocking the function of PC-PLC by exploiting the neutralization antibody of PC-PLC or tricyclodecan-9-yl-xanthogenate (D609), an inhibitor of PC-PLC, significantly inhibited LPS-induced production of IL-8 and MCP-1 in HUVECs. Furthermore, the in vivo experimental results showed that the levels of PC-PLC, IL-8, and MCP-1 in the aortic endothelium and serum were increased in mice injected with LPS. The increased levels of these molecules were also inhibited by the treatment with D609. The data suggested that blocking PC-PLC function significantly inhibited LPS-induced IL-8 and MCP-1 production in cultured HUVECs and in vivo. PC-PLC might be a potential target for therapy in inflammation associated-diseases such as atherosclerosis.  相似文献   

7.
Although several classes of phospholipases have been implicated in NK cell-mediated cytotoxicity, no evidence has been reported to date on involvement of phosphatidylcholine-specific phospholipase C (PC-PLC) in NK activation by lymphokines and/or in lytic granule exocytosis. This study demonstrated the expression of two PC-PLC isoforms (M(r) 40 and 66 kDa) and their IL-2-dependent distribution between cytoplasm and ectoplasmic membrane surface in human NK cells. Following cell activation by IL-2, cytoplasmic PC-PLC translocated from the microtubule-organizing center toward cell periphery, essentially by kinesin-supported transport along microtubules, while PC-PLC exposed on the outer cell surface increased 2-fold. Preincubation of NK cells with a PC-PLC inhibitor, tricyclodecan-9-yl-xanthogenate, strongly reduced NK-mediated cytotoxicity. In IL-2-activated cells, this loss of cytotoxicity was associated with a decrease of PC-PLC exposed on the cell surface, and accumulation of cytoplasmic PC-PLC in the Golgi region. Massive colocalization of PC-PLC-rich particles with perforin-containing granules was found in the cytoplasm of NK-activated (but not NK-resting) cells; both organelles clustered at the intercellular contact region of effector-target cell conjugates. These newly detected mechanisms of PC-PLC translocation and function support an essential role of this enzyme in regulated granule exocytosis and NK-mediated cytotoxicity.  相似文献   

8.
Previously, we reported that the phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor tricyclodecan-9-yl xanthogenate (D609) potentiates thapsigargin-induced Ca(2+) influx in human lymphocytes. In the present study we examined the effect of D609 on the thapsigargin-induced Na(+) entry. We found that the early phase of the thapsigargin-induced increase in the intracellular Na(+) concentration (approx. 1-2 min after stimulation) was attenuated after preincubation of lymphocytes with D609. By contrast, thapsigargin-induced Na(+) influx was not affected in the presence butan-1-ol, which inhibits phosphatidylcholine-specific phospholipase D (PC-PLD). The thapsigargin-induced Na(+) influx could be mimicked by PC-PLC exogenously added to the lymphocyte suspension, whereas addition of PC-PLD had no effect. In addition, thapsigargin stimulated formation of the physiological PC-PLC products, diacylglycerol. Cell-permeable diacylglycerol analogue, dioctanoyl-glycerol (DOG), produced time- and concentration-dependent increase in the intracellular Na(+) concentration. Both thapsigargin- and DOG-induced Na(+) increases were not affected in the presence of Na(+)/H(+) antiport inhibitor, HOE609, or Na(+)/Ca(2+) antiport inhibitor, dimethylthiourea, as well as in the presence of Co(2+) and Ni(2+), which block store-operated Ca(2+) entry. By contrast, markedly reduced thapsigargin- and DOG-induced Na(+) influx were noted in the presence of flufenamic acid, which blocks the non-selective cation current (I(CRANC)). In conclusion, our results suggest that diacylglycerol released due to the PC-PLC activation contributes to the thapsigargin-induced Na(+) entry.  相似文献   

9.
This study uses human alveolar macrophages to determine whether activation of a phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) is linked to activation of the p42/44 (ERK) kinases by LPS. LPS-induced ERK kinase activation was inhibited by tricyclodecan-9-yl xanthogenate (D609), a relatively specific inhibitor of PC-PLC. LPS also increased amounts of diacylglycerol (DAG), and this increase in DAG was inhibited by D609. LPS induction of DAG was, at least in part, derived from PC hydrolysis. Ceramide was also increased in LPS-treated alveolar macrophages, and this increase in ceramide was inhibited by D609. Addition of exogenous C2 ceramide or bacterial-derived sphingomyelinase to alveolar macrophages increased ERK kinase activity. LPS also activated PKC zeta, and this activation was inhibited by D609. LPS-activated PKC zeta phosphorylated MAP kinase kinase, the kinase directly upstream of the ERK kinases. LPS-induced cytokine production (RNA and protein) was also inhibited by D609. As an aggregate, these studies support the hypothesis that one way by which LPS activates the ERK kinases is via activation of PC-PLC and that activation of a PC-PLC is an important component of macrophage activation by LPS.  相似文献   

10.
Insulin stimulates glucose transport in rat adipose cells through the translocation of glucose transporters from an intracellular pool to the plasma membrane. A detailed characterization of the morphology, protein composition and marker enzyme content of subcellular fractions of these cells, prepared by differential ultracentrifugation, and of the distribution of glucose transporters among these fractions is now described. Glucose transporters were measured using specific D-glucose-inhibitable [3H]cytochalasin B binding. In the basal state, roughly 90% of the cells' glucose transporters are associated with a low-density microsomal, Golgi marker enzyme-enriched membrane fraction. However, the distributions of glucose transporters and Golgi marker enzyme activities over all fractions are clearly distinct. Incubation of intact cells with insulin increases the number of glucose transporters in the plasma membrane fraction 4-5 fold and correspondingly decreases the intracellular pool, without influencing any other characteristics of the subcellular fractions examined or the estimated total number of glucose transporters (3.7 X 10(6)/cell). Insulin does not influence the Kd of the glucose transporters in the plasma membrane fraction for cytochalasin B binding (98 nM), but lowers that in the intracellular pool (from 141 to 93 nM). The calculated turnover numbers of the glucose transporters in the plasma membrane vesicles from basal and insulin-stimulated cells are similar (15 X 10(3) mol of glucose/min per mol of transporters at 37 degrees C), whereas insulin appears to increase the turnover number in the plasma membrane of intact cells roughly 4-fold. These results suggest that (1) the intracellular pool of glucose transporters may comprise a specialized membrane species, (2) intracellular glucose transporters may undergo conformational changes during their cycling to the plasma membrane in response to insulin, and (3) the translocation of glucose transporters may represent only one component in the mechanism through which insulin regulates glucose transport in the intact cell.  相似文献   

11.
Acrosomal reaction is an essential prerequisite to fertilization. The changes in lipid composition of sperm membranes cause fusion of the plasma and outer acrosomal membranes that results in the exocytosis of acrosomal contents. We report that both bull and rabbit spermatozoa contain a phosphatidylcholine-specific phospholipase C (PC-PLC) that hydrolyzes L-alpha-dipalmitoyl-(choline-methyl-14C-153.0 Ci/mmol and a phosphatidylinositol-specific phospholipase C (PI-PLC) that hydrolyzes L-alpha-(Myo-Inositol-2-3H (N)-5.2 Ci mmol. PI-PLC from bull sperm acrosome has been purified 568 x fold with a specific activity 6.25 +/- 0.6 nmol/min/mg protein, km 0.004 mM, and Vmax 12 nmol/min/mg protein. Both enzymes had optimum at pH 7.5. The activity of PC-PLC remained unaffected by varying concentrations of Ca2+, whereas PI-PLC activity was significantly increased. The bulk of PI-PLC was found to be associated with inner acrosomal membrane of bull and rabbit sperm, while PC-PLC was found in the outer acrosomal membranes in the bull sperm and the plasma membrane of the rabbit sperm. Both enzymes are compartmentalized in sperm cell.  相似文献   

12.
We have investigated the roles of ceramide in Fas signalling leading to phospholipase D (PLD) activation in A20 cells. Upon stimulation of Fas signalling by anti-Fas monoclonal antibody, sphingomyelin hydrolysis and activation of PLD were induced. Also, the translocation of protein kinase C (PKC) βI and βII and the elevation of diacylglycerol (DAG) content were induced by Fas cross-linking. When phosphatidylcholine-specific phospholipase C (PC-PLC) was inhibited by D609, the Fas-induced changes in PLD activity, DAG content, and PKC translocation were inhibited. In contrast, D609 had no effect on Fas-induced alterations in sphingolipid metabolism, suggesting that changes in ceramide content do not account for Fas-induced PLD activation. Furthermore, C6-ceramide had no effect on Fas-induced PLD activation and PKC translocation. Taken together, these data might suggest that ceramide generated by Fas cross-linking does not affect PKC β-dependent PLD activity stimulated by anti-Fas monoclonal antibody in A20 cells.  相似文献   

13.
Involvement of acidic cell compartments in processing and action of cholera toxin (CT) in rat liver has been examined using subcellular fractionation. Liver cell fractions prepared various times after CT injection display, after a lag phase, a progressive increase in adenylate cyclase activity, detectable earlier in Golgi-endosomal fractions (20 min) than in plasma membrane fractions (30 min), with a maximum (3-fold basal activity) achieved by 60-90 min. Endosomes containing in vivo internalized CT display a time-dependent increase in their ability to bind anti-A-subunit antibodies and to stimulate exogenous adenylate cyclase, which kinetically parallels the generation of A1 peptide, suggesting a translocation of A-subunit (or A1 peptide) across the endosomal membrane. In vivo chloroquine treatment inhibits endocytosis of CT taken up into the liver, lengthens the lag phase for adenylate cyclase activation by CT, and reduces by 3- to 10-fold the apparent affinity of the toxin for the enzyme. Incubation of endosomes containing internalized toxin at 37 degrees C under isotonic conditions results in a pH-dependent increase in generation of A1 peptide, membrane translocation of A-subunit (or A1 peptide), and degradation of toxin, with a maximum at pH 5. Addition of ATP, by decreasing the internal endosomal pH, stimulates both generation of the A1 peptide and degradation of toxin at pH 6-8. It is concluded that activation of adenylate cyclase by CT in intact liver requires association and subsequent processing of toxin in an acidic cell compartment, presumably endosomal.  相似文献   

14.
Our previous study showed differential subcellular localization of protein kinase C (PKC) delta by phorbol esters and related ligands, using a green fluorescent protein-tagged construct in living cells. Here we compared the abilities of a series of symmetrically substituted phorbol 12,13-diesters to translocate PKC delta. In vitro, the derivatives bound to PKC with similar potencies but differed in rate of equilibration. In vivo, the phorbol diesters with short, intermediate, and long chain fatty acids induced distinct patterns of translocation. Phorbol 12,13-dioctanoate and phorbol 12,13-nonanoate, the intermediate derivatives and most potent tumor promoters, showed patterns of translocation typical of phorbol 12-myristate 13-acetate, with plasma membrane and subsequent nuclear membrane translocation. The more hydrophilic compounds (phorbol 12,13-dibutyrate and phorbol 12,13-dihexanoate) induced a patchy distribution in the cytoplasm, more prominent nuclear membrane translocation, and little plasma membrane localization at all concentrations examined (100 nM to 10 microM). The highly lipophilic derivatives, phorbol 12,13-didecanoate and phorbol 12, 13-diundecanoate, at 1 microM caused either plasma membrane translocation only or no translocation at incubation times up to 60 min. Our results indicate that lipophilicity of phorbol esters is a critical factor contributing to differential PKC delta localization and thereby potentially to their different biological activities.  相似文献   

15.
As an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 has been widely used to explain the role of PC-PLC in various signal transduction pathways. This study shows that D609 inhibits group IV cytosolic phospholipase A2 (cPLA2), but neither secretory PLA2 nor a Ca2+ -dependent PLA2. Dixon plot analysis shows a mixed pattern of noncompetitive and uncompetitive inhibition with Ki = 86.25 microM for the cPLA2 purified from bovine spleen. D609 also time- and dose-dependently reduces the release of arachidonic acid from a Ca2+- ionophore A23187-stimulated MDCK cells. In the AA release experiment, IC50 of D609 was approximately 375 microM, suggesting that this reagent may not enter the cells easily. The present study indicates that the inhibitory effects of D609 on various cellular responses may be partially attributable to the inhibition of cPLA2.  相似文献   

16.
17.
Imidazoline receptor antisera-selected protein (IRAS) is considered as a candidate for the I1-imidazoline receptor (I1R), but the signaling pathway mediated by IRAS remains unknown. In our study, the signal transduction pathways of IRAS were investigated in CHO cells stably expressing IRAS (CHO-IRAS), and compared to the native I1R signaling pathways. Rilmenidine or moxonidine (10 nM-100 microM), I1R agonists, failed to stimulate [35S]-GTPgammaS binding in CHO-IRAS cell membrane preparations, suggesting that G protein may not be involved in IRAS signaling pathway. However, incubation of CHO-IRAS with rilmenidine or moxonidine for 5 min could induce an upregulation of phosphatidylcholine-selective phospholipase C (PC-PLC) activity, and an increase in the accumulation of diacylglycerol (DAG), the hydrolysate of PC-PLC, in a concentration-dependent manner. The elevated activation of PC-PLC by rilmenidine or moxonidine (100 nM) could be blocked by efaroxan, a selective I1R antagonist. Cells treated with rilmenidine or moxonidine showed an increased level of extracellular signal-regulated kinase (ERK) phosphorylation in a concentration-dependent manner, which could be reversed by efaroxan or D609, a selective PC-PLC inhibitor. These results suggest that the signaling pathway of IRAS in response to I1R agonists coupled with the activation of PC-PLC and its downstream signal transduction molecule, ERK. These findings are similar to those in the signaling pathways of native I1R, providing some new evidence for the relationship between I1R and IRAS.  相似文献   

18.
In the previous research, we found that D609 (tricyclodecan-9-yl-xanthogenate) could induce human marrow stromal cell (hMSC) differentiation to neuron-like cells. In this study, to understand the possible mechanism, we sequentially investigated the changes of phosphatidylcholine-specific phospholipase C (PC-PLC) activity, the expression of Rb, the intracellular reactive oxygen species (ROS) levels, NADPH oxidase and superoxide dismutase (SOD) activities when D609 induced neuronal differentiation in rat mesenchymal stem cells (MSCs). The results showed that D609 obviously inhibited the activity of PC-PLC when it induced neuronal differentiation in rat MSCs. Simultaneously, ROS level and the activity of NADPH oxidase increased significantly, but the MnSOD and Cu/ZnSOD activities were not altered. Furthermore, the level of Rb protein was evidently elevated. Our data suggested that PC-PLC mediated neuronal differentiation of rat MSCs by elevating NADPH oxidase activity, ROS level, and up-regulating the expression of Rb protein.  相似文献   

19.
Insulin stimulates glucose transport in rat adipose cells through the translocation of glucose transporters from an intracellular pool to the plasma membrane. A detailed characterization of the morphology, protein composition and marker enzyme content of subcellular fractions of these cells, prepared by differential ultracentrifugation, and of the distribution of glucose transporters among these fractions is now described. Glucose transporters were measured using specific d-glucose-inhibitable [3H]cytochalasin B binding. In the basal state, roughly 90% of the cells' glucose transporters are associated with a low-density microsomal, Golgi marker enzyme-enriched membrane fraction. However, the distributions of glucose transporters and Golgi marker enzyme activities over all fractions are clearly distinct. Incubation of intact cells with insulin increases the number of glucose transporters in the plasma membrane fraction 4–5-fold and correspondingly decreases the intracellular pool, without influencing any other characteristics of the subcellular fractions examined or the estimated total number of glucose transporters (3.7·106/cell). Insulin does not influence the Kd of the glucose transporters in the plasma membrane fraction for cytochalasin B binding (98 nM), but lowers that in the intracellular pool (from 141 to 93 nM). The calculated turnover numbers of the glucose transporters in the plasma membrane vesicles from basal and insulin-stimulated cells are similar (15·103 mol of glucose/min per mol of transporters at 37°C), whereas insulin appears to increase the turnover number in the plasma membrane of intact cells roughly 4-fold. These results suggest that (1) the intracellular pool of glucose transporters may comprise a specialized membrane species, (2) intracellular glucose transporters may undergo conformational changes during their cycling to the plasma membrane in response to insulin, and (3) the translocation of glucose transporters may represent only one component in the mechanism through which insulin regulates glucose transport in the intact cell.  相似文献   

20.
Han J  Shin I 《Cellular signalling》2000,12(11-12):731-736
We have investigated the roles of ceramide in Fas signalling leading to phospholipase D (PLD) activation in A20 cells. Upon stimulation of Fas signalling by anti-Fas monoclonal antibody, sphingomyelin hydrolysis and activation of PLD were induced. Also, the translocation of protein kinase C (PKC) betaI and betaII and the elevation of diacylglycerol (DAG) content were induced by Fas cross-linking. When phosphatidylcholine-specific phospholipase C (PC-PLC) was inhibited by D609, the Fas-induced changes in PLD activity, DAG content, and PKC translocation were inhibited. In contrast, D609 had no effect on Fas-induced alterations in sphingolipid metabolism, suggesting that changes in ceramide content do not account for Fas-induced PLD activation. Furthermore, C6-ceramide had no effect on Fas-induced PLD activation and PKC translocation. Taken together, these data might suggest that ceramide generated by Fas cross-linking does not affect PKC beta-dependent PLD activity stimulated by anti-Fas monoclonal antibody in A20 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号