首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There have been no therapeutic agents that provide a survival advantage in hormone-refractory prostate cancer. Recently, the Food and Drug Administration approved docetaxel combined with prednisone for the treatment of patients with advanced metastatic prostate cancer, and it does show a survival benefit. Hence, anti-microtubule drugs might be of benefit in chemotherapy of hormone-refractory prostate cancer. We used metastatic hormone-refractory prostate cancer PC-3 cells to investigate potential molecular mechanisms for CIL-102, a semisynthetic alkaloid derivative. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide and sulforhodamine B assays indicated that CIL-102 inhibits cell growth dose-dependently. Immunofluorescence microscopy and in vitro tubulin assembly assays indicated that CIL-102 binds to tubulin and disrupts microtubule organization. Flow cytometry showed that CIL-102 causes cells to accumulate in G(2)/M phase and sub-G(0)/G(1) phase. CIL-102-induced apoptosis was also characterized by immunofluorescence microscopy. Western blotting and kinase assays showed that CIL-102 exposure induced up-regulation of cyclin B1 and p34(cdc2) kinase activity and olomoucine, a p34(cdc2) inhibitor, profoundly reduced the number of cells accumulated in mitotic phase. Moreover, Bcl-2 phosphorylation, Cdc25C phosphorylation, and survivin expression were increased. CIL-102-induced apoptosis was associated with activation of caspase-3, but a noncaspase pathway may also be involved, since benzyloxycarbonyl-VAD-fluoromethyl ketone, a pancaspase inhibitor, only partially inhibited the apoptosis, and apoptosis-inducing factor was translocated from mitochondria to cytosol. We conclude that CIL-102 induces mitotic arrest and apoptosis by binding to tubulin and inhibiting tubulin polymerization. CIL-102 causes mitotic arrest, at least partly, by modulating cyclin-dependent kinases and then apoptosis executed by caspase and noncaspase pathways.  相似文献   

2.
BF12 [(2E)‐3‐[6‐Methoxy‐2‐(3,4,5‐trimethoxybenzoyl)‐1‐benzofuran‐5‐yl]prop‐2‐enoic acid], a novel derivative of combretastatin A‐4 (CA‐4), was previously found to inhibit tumor cell lines, with a particularly strong inhibitory effect on cervical cancer cells. In this study, we investigated the microtubule polymerization effects and apoptosis signaling mechanism of BF12. BF12 showed a potent efficiency against cervical cancer cells, SiHa and HeLa, with IC50 values of 1.10 and 1.06 μm , respectively. The cellular mechanism studies revealed that BF12 induced G2/M phase arrest and apoptosis in SiHa and HeLa cells, which were associated with alterations in the expression of the cell G2/M cycle checkpoint‐related proteins (cyclin B1 and cdc2) and alterations in the levels of apoptosis‐related proteins (P53, caspase‐3, Bcl‐2, and Bax) of these cells, respectively. Western blot analysis showed that BF12 inhibited the PI3 K/Akt/mTOR signaling pathway and induced apoptosis in human cervical cancer cells. BF12 was identified as a tubulin polymerization inhibitor, evidenced by the effective inhibition of tubulin polymerization and heavily disrupted microtubule networks in living SiHa and HeLa cells. By inhibiting the PI3 K/Akt/mTOR signaling pathway and inducing apoptosis in human cervical cancer cells, BF12 shows promise for use as a microtubule inhibitor.  相似文献   

3.
Microtubule cytoskeletons are involved in many essential functions throughout the life cycle of cells, including transport of materials into cells, cell movement, and proper progression of cell division. Small compounds that can bind at the colchicine site of tubulin have drawn great attention because these agents can suppress or inhibit microtubule dynamics and tubulin polymerization. To find novel tubulin polymerization inhibitors as anti-mitotic agents, we performed a virtual screening study of the colchicine binding site on tubulin. Novel tubulin inhibitors were identified and characterized by their inhibitory activities on tubulin polymerization in vitro. The structural basis for the interaction of novel inhibitors with tubulin was investigated by molecular modeling, and we have proposed binding models for these hit compounds with tubulin. The proposed docking models were very similar to the binding pattern of colchicine or podophyllotoxin with tubulin. These new hit compound derivatives exerted growth inhibitory effects on the HL60 cell lines tested and exhibited strong cell cycle arrest at G2/M phase. Furthermore, these compounds induced apoptosis after cell cycle arrest. In this study, we show that the validated derivatives of compound 11 could serve as potent lead compounds for designing novel anti-cancer agents that target microtubules.  相似文献   

4.
Previously, we showed that sulforaphane (SFN), a naturally occurring cancer chemopreventive agent, effectively inhibits proliferation of PC-3 human prostate cancer cells by causing caspase-9- and caspase-8-mediated apoptosis. Here, we demonstrate that SFN treatment causes an irreversible arrest in the G(2)/M phase of the cell cycle. Cell cycle arrest induced by SFN was associated with a significant decrease in protein levels of cyclin B1, cell division cycle (Cdc) 25B, and Cdc25C, leading to accumulation of Tyr-15-phosphorylated (inactive) cyclin-dependent kinase 1. The SFN-induced decline in Cdc25C protein level was blocked in the presence of proteasome inhibitor lactacystin, but lactacystin did not confer protection against cell cycle arrest. Interestingly, SFN treatment also resulted in a rapid and sustained phosphorylation of Cdc25C at Ser-216, leading to its translocation from the nucleus to the cytoplasm because of increased binding with 14-3-3beta. Increased Ser-216 phosphorylation of Cdc25C upon treatment with SFN was the result of activation of checkpoint kinase 2 (Chk2), which was associated with Ser-1981 phosphorylation of ataxia telangiectasia-mutated, generation of reactive oxygen species, and Ser-139 phosphorylation of histone H2A.X, a sensitive marker for the presence of DNA double-strand breaks. Transient transfection of PC-3 cells with Chk2-specific small interfering RNA duplexes significantly attenuated SFN-induced G(2)/M arrest. HCT116 human colon cancer-derived Chk2(-/-) cells were significantly more resistant to G(2)/M arrest by SFN compared with the wild type HCT116 cells. These findings indicate that Chk2-mediated phosphorylation of Cdc25C plays a major role in irreversible G(2)/M arrest by SFN. Activation of Chk2 in response to DNA damage is well documented, but the present study is the first published report to link Chk2 activation to cell cycle arrest by an isothiocyanate.  相似文献   

5.
1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) is known as a specific inhibitor of soluble guanylyl cyclase (sGC). Previously, however, ODQ was reported to induce cell death via sGC-dependent and sGC-independent means in a variety of cell types. The aim of this study was to investigate the mechanism by which ODQ induces cell death in HeLa cells.Treatment of HeLa cells with ODQ induced a concentration-dependent decrease in cell viability over the range from 10 to 100 μM. DNA fragmentation and fluorescence-activated cell sorting analysis using annexin V and propidium iodide staining revealed that ODQ triggered apoptosis at concentrations of 50 and 100 μM within 24 to 48 h. The addition of 8-Br-cGMP in the presence of ODQ failed to rescue HeLa cells from death, suggesting that the inhibition of sGC was not responsible for the pro-apoptotic action of ODQ. ODQ arrested the cell cycle at the G2/M phase and caused disassembly of the microtubule network. This process was reversed by dithiothreitol. In addition, ODQ was shown to inhibit the polymerization of purified tubulin, and this was also prevented by dithiothreitol. These results indicate that ODQ inhibits microtubule assembly by direct oxidation of tubulin, induces cell cycle arrest at the G2/M phase, and triggers apoptosis in HeLa cells.  相似文献   

6.
Cell cycle arrest of malignant cells is an important option for cancer treatment. In this study, we modified the structure of antimitotic 2-phenylindole-3-carbaldehydes by condensation with malononitrile. The resulting methylene propanedinitriles inhibited the growth of MDA-MB 231 and MCF-7 breast cancer cells with IC(50) values below 100 nM. Though they exhibited similar structure-activity relationships as the aldehydes, they did not inhibit tubulin polymerization but were capable of blocking the cell cycle in G(2)/M phase. The cell cycle arrest was accompanied by apoptosis as demonstrated by the activation of caspases 3 and 9. Since the new 2-phenylindole derivatives also inhibited the growth of transplanted MXT mouse mammary tumors, they are interesting candidates for further development.  相似文献   

7.
The Bolbostemma paniculatum (Maxim.) Franquet (Cucurbitaceae) is a Chinese herb with anticancer potential. Its main active component tubeimoside-1 (TBMS1), a triterpenoid saponin, was previously proved as a potent anticancer chemotherapeutic agent; however, the molecular basis for its activities is still elusive. In the present study, subcellular proteomic study in the cytoplasm and membrane protein fractions extracted from HeLa cells revealed that proteins act as mediators of ROS generation and Ca(2+) regulation were substantially altered in expression upon TBMS1 stimuli. We also found that TBMS1 induced cell cycle arrest at G2/M phase accompanied by a decrease in G0/G1 phase in HeLa cells. Further biochemical studies showed that TBMS1 inhibited the levels of cyclinB1, Cdc2 and Cdc25C, but enhanced Chk2 phosphorylation. In addition, the cytoplasm sequestration of Cdc25C, Cip1/p21 induction and tubulin dyspolymerization also contributed to the TBMS1-mediated cell cycle arrest on the G2/M phase.  相似文献   

8.
A novel series of diarylsulfonylurea derivatives were synthesized and evaluated for interaction with tubulin and for cytotoxicity against human cancer cell lines. These derivatives demonstrated good inhibitory activity against tubulin polymerization, which was well correlated with promising antiproliferative activity as well as G2/M phase cell cycle arrest. Furthermore, several compounds were also efficacious against multidrug-resistant cancer cells, which are resistant to many other known microtubule inhibitors.  相似文献   

9.
Identification of a functional domain in a GADD45-mediated G2/M checkpoint   总被引:3,自引:0,他引:3  
Cell cycle checkpoints are essential for the maintenance of genomic stability in response to DNA damage. We demonstrated recently that GADD45, a DNA damage-inducible protein, activates a G(2)/M checkpoint induced by either UV radiation or alkylating agents. GADD45 can interact in vivo with the G(2) cell cycle-specific kinase, Cdc2, proliferating cell nuclear antigen (PCNA), and the cell cycle kinase inhibitor p21(waf1). The ability of GADD45 to induce a G(2)/M arrest may be caused in part by the inhibition of Cdc2 kinase activity. Here, we report the identification of a region of GADD45 that is involved in this G(2)/M checkpoint. Mutants of GADD45 that lacked either the first 35 or the last 80 residues still retained an ability to induce G(2)/M arrest. A mutant with a deletion of the central region (residues 50-76), which is conserved in the family members GADD45beta and GADD45gamma, lacked such activity. This mutant also lacked an ability to bind to Cdc2, PCNA, and p21(waf1) in vivo. Consistently, either GADD45beta or GADD45gamma bind to Cdc2 in vivo. However, unlike GADD45, neither GADD45beta nor GADD45gamma inhibited the Cdc2 kinase or induced G(2)/M arrest. The unique effect of GADD45 may be caused by the presence of a region containing DEDDDR residues. Alanine substitutions in the region abolished GADD45 induction of a G(2)/M arrest and its inactivation of the Cdc2 kinase but not its binding to Cdc2, PCNA, or p21(waf1). Therefore, the binding of GADD45 to Cdc2 was insufficient to induce a G(2)/M arrest, and additional activity contributed by the DEDDDR residues may be necessary to regulate the G(2)/M checkpoint.  相似文献   

10.
Vpr and selected mutants were used in a Saccharomyces cerevisiae two-hybrid screen to identify cellular interactors. We found Vpr interacted with 14-3-3 proteins, a family regulating a multitude of proteins in the cell. Vpr mutant R80A, which is inactive in cell cycle arrest, did not interact with 14-3-3. 14-3-3 proteins regulate the G(2)/M transition by inactivating Cdc25C phosphatase via binding to the phosphorylated serine residue at position 216 of Cdc25C. 14-3-3 overexpression in human cells synergized with Vpr in the arrest of cell cycle. Vpr did not arrest efficiently cells not expressing 14-3-3sigma. This indicated that a full complement of 14-3-3 proteins is necessary for optimal Vpr function on the cell cycle. Mutational analysis showed that the C-terminal portion of Vpr, known to harbor its cell cycle-arresting activity, bound directly to the C-terminal part of 14-3-3, outside of its phosphopeptide-binding pocket. Vpr expression shifted localization of the mutant Cdc25C S216A to the cytoplasm, indicating that Vpr promotes the association of 14-3-3 and Cdc25C, independently of the presence of serine 216. Immunoprecipitations of cell extracts indicated the presence of triple complexes (Vpr/14-3-3/Cdc25C). These results indicate that Vpr promotes cell cycle arrest at the G(2)/M phase by facilitating association of 14-3-3 and Cdc25C independently of the latter's phosphorylation status.  相似文献   

11.
A series of chalcone-amidobenzothiazole conjugates (9a-k and 10a,b) have been synthesized and evaluated for their anticancer activity. All these compounds exhibited potent activity and the IC(50) of two potential compounds (9a and 9f) against different cancer cell lines are in the range of 0.85-3.3 μM. Flow cytometric analysis revealed that these compounds induced cell cycle arrest at G2/M phase in A549 cell line leading to caspase-3 dependent apoptotic cell death. The tubulin polymerization assay (IC(50) of 9a is 3.5 μM and 9f is 5.2 μM) and immuofluorescence analysis showed that these compounds effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Further, Annexin staining also suggested that these compounds induced cell death by apoptosis. Moreover, docking experiments have shown that they interact and bind efficiently with tubulin protein. Overall, the current study demonstrates that the synthesis of chalcone-amidobenzothiazole conjugates as promising anticancer agents with potent G2/M arrest and apoptotic-inducing activities via targeting tubulin.  相似文献   

12.
Vpr of human immunodeficiency virus type 1 causes cell cycle arrest at the G(2)/M phase and induces apoptosis after G(2)/M arrest in primate cells. We have reported previously that Vpr also induces apoptosis independently of G(2)/M arrest in human HeLa cells. By contrast, Vpr does not induce G(2)/M arrest in rodent cells, but it retards cell growth. To clarify the relationship between cell cycle arrest and apoptosis, we expressed Vpr endogenously in rodent cells and investigated cell cycle profiles and apoptosis. We show here that Vpr induces cell cycle arrest at the G(1) phase and apoptosis in rodent cells. Vpr increased the activity of caspase-3 and caspase-9, but not of caspase-8. Moreover, Vpr-induced apoptosis could be inhibited by inhibitors of caspase-3 and caspase-9, but not by inhibitor of caspase-8. We also showed that Vpr induces the release of cytochrome c from mitochondria into the cytosol and disrupts the mitochondrial transmembrane potential. Finally, we showed that apoptosis occurred in HeLa cells through an identical pathway. These results suggest that disruption of mitochondrial functions by Vpr induces apoptosis via cell cycle arrest at G(1), but that apoptosis is independent of G(2)/M arrest. Furthermore, it appears that Vpr acts species-specifically with respect to induction of cell cycle arrest but not of apoptosis.  相似文献   

13.
Chalcones are characterized by possessing an enone moiety between two aromatic rings. A series of chalcone-like agents, in which the double bond of the enone system is embedded within a thiophene ring, were synthesized and evaluated for antiproliferative activity and inhibition of tubulin assembly and colchicine binding to tubulin. The replacement of the double bond with a thiophene maintains antiproliferative activity and therefore must not significantly alter the relative conformation of the two aryl rings. The synthesized compounds were found to inhibit the growth of several cancer cell lines at nanomolar to low micromolar concentrations. In general, all compounds having significant antiproliferative activity inhibited tubulin polymerization with an IC(50)<2microM. Several of these compounds caused K562 cells to arrest in the G2/M phase of the cell cycle.  相似文献   

14.
Cell cycle arrest of malignant cells is an important option for cancer treatment. In this study, we modified the structure of antimitotic 2-phenylindole-3-carbaldehydes by condensation with hydrazides of various benzoic and pyridine carboxylic acids. The resulting hydrazones inhibited the growth of MDA-MB 231 and MCF-7 breast cancer cells with IC(50) values of 20-30 nM for the most potent derivatives. These 2-phenylindole derivatives also exerted an inhibitory effect on the growth of both proliferating and resting U-373 MG glioblastoma cells. Though the hydrazones exhibited similar structure-activity relationships as the aldehydes, they did not inhibit tubulin polymerization as the aldehydes but were capable of blocking the cell cycle in G(2)/M phase. The cell cycle arrest was accompanied by apoptosis as demonstrated by the activation of caspase-3. Since these 2-phenylindole-based hydrazones display no structural similarity with other antitumor drugs they are interesting candidates for further development.  相似文献   

15.
Yuan H  Kamata M  Xie YM  Chen IS 《Journal of virology》2004,78(15):8183-8190
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle arrest at the G(2)/M transition and subsequently apoptosis. Here we examined the potential involvement of Wee-1 in Vpr-induced G(2) arrest. Wee-1 is a cellular protein kinase that inhibits Cdc2 activity, thereby preventing cells from proceeding through mitosis. We previously showed that the levels of Wee-1 correlate with Vpr-mediated apoptosis. Here, we demonstrate that Vpr-induced G(2) arrest correlated with delayed degradation of Wee-1 at G(2)/M. Experimental depletion of Wee-1 by a small interfering RNA directed to wee-1 mRNA alleviated Vpr-induced G(2) arrest and allowed apparently normal progression through M into G(1). Similar results were observed when cells were arrested at G(2) following gamma irradiation. Thus, Wee-1 is integrally involved as a key cellular regulatory protein in the signal transduction pathway for HIV-1 Vpr-induced cell cycle arrest.  相似文献   

16.
Although a major effect of p21, a cyclin-dependent kinase inhibitor, is considered to be exerted during G(1) phase of the cell cycle, p21 gene knock-out studies suggested its involvement in G(2)/M checkpoint as well. Here we demonstrate evidence that p21 is required for the cell cycle arrest at G(2) upon DNA damage. We found that expression of wild-type p21 (p21(WT)), not mutant p21 (p21(PCNA-)) lacking the interaction with proliferating cell nuclear antigen (PCNA), caused G(2) cell cycle arrest in p53-deficient DLD1 colon cancer cell line after the DNA damage by treatment with cis-diamminedichloroplatinum (II). We also found that p21(WT) was associated with Cdc2/cyclin B1 together with PCNA. Furthermore, coimmunoprecipitation experiments revealed that PCNA interacted with Cdc25C at the G(2)/M transition, and this interaction was abolished when p21(WT) was expressed presumably due to the competition between p21(WT) and Cdc25C in the binding to PCNA. These findings suggest that p21 plays a regulatory role in the maintenance of cell cycle arrest at G(2) by blocking the interaction of Cdc25C with PCNA.  相似文献   

17.
The cycle inhibiting factor (Cif) belongs to a family of bacterial toxins and effector proteins, the cyclomodulins, that deregulate the host cell cycle. Upon injection into HeLa cells by the enteropathogenic Escherichia coli (EPEC) type III secretion system, Cif induces a cytopathic effect characterized by the recruitment of focal adhesion plates and the formation of stress fibres, an irreversible cell cycle arrest at the G(2)/M transition, and sustained inhibitory phosphorylation of mitosis inducer, CDK1. Here, we report that the reference typical EPEC strain B171 produces a functional Cif and that lipid-mediated delivery of purified Cif into HeLa cells induces cell cycle arrest and actin stress fibres, implying that Cif is necessary and sufficient for these effects. EPEC infection of intestinal epithelial cells (Caco-2, IEC-6) also induces cell cycle arrest and CDK1 inhibition. The effect of Cif is strikingly similar to that of cytolethal distending toxin (CDT), which inhibits the G(2)/M transition by activating the DNA-damage checkpoint pathway. However, in contrast to CDT, Cif does not cause phosphorylation of histone H2AX, which is associated with DNA double-stranded breaks. Following EPEC infection, the checkpoint effectors ATM/ATR, Chk1 and Chk2 are not activated, the levels of the CDK-activating phosphatases Cdc25B and Cdc25C are not affected, and Cdc25C is not sequestered in host cell cytoplasm. Hence, Cif activates a DNA damage-independent signalling pathway that leads to inhibition of the G(2)/M transition.  相似文献   

18.
Chen J  Gu HY  Lu N  Yang Y  Liu W  Qi Q  Rong JJ  Wang XT  You QD  Guo QL 《Life sciences》2008,83(3-4):103-109
Gambogic acid (GA), an ingredient isolated from Garcinia hanburyi, has potent anticancer activity both in vitro and in vivo. In the present study, we examined the effects of GA on intracellular microtubules and reconstituted microtubules in vitro. Immunofluorescence microscopy revealed that 2.5 muM GA caused microtubule cytoskeleton disruption and microtubule depolymerization in human breast carcinoma MCF-7 cells, thereby reducing the amount of polymer form of tubulin and increasing the amount of monomer form of tubulin. We further confirmed that GA could depolymerize microtubule associated protein (MAP)-free microtubules and MAP-rich microtubules in vitro. Thus we suggested that GA-induced G2/M phase cell cycle arrest may be attributed to its depolymerization of microtubules. We also revealed that phosphorylation levels of p38 and c-Jun N-terminal kinase-1 (JNK-1) were increased markedly by GA, resulting in apoptosis of MCF-7 cells. Taken together, our results suggested that GA depolymerized microtubules and elevated the phosphorylation levels of JNK1 and p38, which caused G2/M cell cycle arrest and apoptosis in MCF-7 cells.  相似文献   

19.
Microtubules provide structural support for a cell and play key roles in cell motility, mitosis, and meiosis. They are also the targets of several anticancer agents, indicating their importance in maintaining cell viability. We have investigated the possibility that alterations in microtubule structure and tubulin polymerization may be part of the cellular response to DNA damage. In this report, we find that γ-radiation stimulates the production and polymerization of α-, β-, and γ- tubulin in hematopoeitic cell lines (Ramos, DP16), leading to visible changes in microtubule structures. We have found that this microtubule reorganization can be prevented by caffeine, a drug that concomitantly inhibits DNA damage-induced cell cycle arrest and apoptosis. Our results support the idea that microtubule polymerization is an important facet of the mammalian response to DNA damage.  相似文献   

20.
Small molecules such as indoles are attractive as inhibitors of tubulin polymerization. Thus a number of 2-phenylindole-3-carbaldehydes with lipophilic substituents in both aromatic rings was synthesized and evaluated for antitumor activity in MDA-MB 231 and MCF-7 breast cancer cells. Some 5-alkylindole derivatives with a 4-methoxy group in the 2-phenyl ring strongly inhibit the growth of breast cancer cells with IC(50) values of 5-20nM. Their action can be rationalized by the cell cycle arrest in G(2)/M phase due to the inhibition of tubulin polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号