首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of Pseudomonas pseudoflava to produce poly-beta-hydroxyalkanoates (PHAs) from pentoses was studied. This organism was able to use a hydrolysate from the hemicellulosic fraction of poplar wood as a carbon and energy source for its growth. However, in batch cultures, growth was inhibited completely at hydrolysate concentrations higher than 30% (vol/vol). When P. pseudoflava was grown on the major sugars present in hemicelluloses in batch cultures, poly-beta-hydroxybutyric acid (PHB) accumulated when glucose, xylose, or arabinose was the sole carbon source, with the final PHB content varying from 17% (wt/wt) of the biomass dry weight on arabinose to 22% (wt/wt) of the biomass dry weight on glucose and xylose. Specific growth rates were 0.58 h on glucose, 0.13 h on xylose, and 0.10 h on arabinose, while the specific PHB production rates based on total biomass ranged from 0.02 g g h on arabinose to 0.11 g g h on glucose. PHB weight-average molecular weights were 640,000 on arabinose and 1,100,000 on glucose and xylose. The absolute amount of PHB in the cells decreased markedly when nitrogen limitation was relaxed by feeding ammonium sulfate at the end of the PHB accumulation stage of the arabinose and xylose fermentations. Copolymers of beta-hydroxybutyric and beta-hydroxyvaleric acids were produced when propionic acid was added to shake flasks containing 10 g of glucose liter. The beta-hydroxyvaleric acid monomer content attained a maximum of 45 mol% when the initial propionic acid concentration was 2 g liter.  相似文献   

2.
Different recombinant R-3-hydroxybutyryl-CoA (3-HB) synthesis pathways strongly influenced the rate and accumulation of the biopolymer poly[(R)-3-hydroxybutyrate] (PHB) in Saccharomyces cerevisiae. It has been previously shown that expression of the Cupriavidus necator PHB synthase gene leads to PHB accumulation in S. cerevisiae [Leaf, T., Peterson, M., Stoup, S., Somers, D., Srienc, F., 1996. Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology 142, 1169-1180]. This finding indicates that native S. cerevisiae expresses genes capable of synthesizing the correct stereochemical substrate for the synthase enzyme. The effects of variations of 3-HB precursor pathways on PHB accumulation were investigated by expressing combinations of C. necator PHB pathway genes. When only the PHB synthase gene was expressed, the cells accumulated biopolymer to approximately 0.2% of their cell dry weight. When the PHB synthase and reductase gene were co-expressed, the PHB levels increased approximately 18 fold to about 3.5% of the cell dry weight. When the beta-ketothiolase, reductase and synthase genes were all expressed, the strain accumulated PHB to approximately 9% of the cell dry weight which is 45 fold higher than in the strain with only the synthase gene. Fluorescent microscopic analysis revealed significant cell-to-cell heterogeneity in biopolymer accumulation. While the population average for the strain expressing three PHB genes was approximately 9% of the cell dry weight, some cells accumulated PHB in excess of 50% of their cell volume. Other cells accumulated no biopolymer. In addition, the recombinant strain was shown to co-produce ethanol and PHB under anaerobic conditions. These results demonstrate that the technologically important organism S. cerevisiae is capable of accumulating PHB aerobically and anaerobically at levels similar to some bacterial systems. The easily assayed PHB system also creates a convenient means of probing in vivo the presence of intracellular metabolites which could be useful for studying the intermediary metabolism of S. cerevisiae.  相似文献   

3.
In a limited-scale survey, 55 soil streptomycetes were screened for the accumulation of poly (3-hydroxybutyrate) [PHB]. Only 18% of the isolates accumulated PHB ranging between 1.9–7.8% of the dry biomass. The promising isolate DBCC-719, identified as Streptomyces griseorubiginosus, accumulated PHB amounting to 9.5% of the mycelial dry mass in the early stationary phase when grown in chemically defined medium with 2% (wt/vol) glucose as the sole source of carbon. Nitrogen-limiting conditions were inhibitory to growth and PHB accumulation. The isolated polymer was highly soluble in chloroform, gave a sharp peak at 235 nm on digestion with concentrated H2SO4, and had a characteristic infrared spectrum. Received: 26 March 1999 / Accepted: 3 May 1999  相似文献   

4.
Batch culture conditions were established for the formation of H(2)-driven whole-cell soluble or particulate methane monooxygenase (sMMO or pMMO) activity in the obligate methanotroph, Methylosinus trichosporum Ob3b, to expand its potential uses in groundwater bioremediation and the production of specific chemicals. Addition of either Ni and H(2) to a nitrate-containing minimal salts growth medium or Ni and Mo to a nitrate-lacking growth medium (induces a nitrogenase that generates intracellular H(2)) markedly enhanced both the hydrogenase and the accompanying washed-cell H(2)-driven MMO activities of shake-flask cultured cells. For sMMO containing cells, H(2) provided in vitro reducing power for the oxidation of chlorinated solvents such as chloroform and trichloroethylene. Cell cultivations under N(2)-fixing conditions in a 5-L bioreactor, however, required an initial nitrate concentration of at least 1 to 2 mM to achieve high biomass yields (5 to 7 g of dry cell wt/L) for cells producing H(2)-driven sMMO or pMMO activity. Elevation of the initial medium nitrate concentration to 20 mM shortened the culture time for pMMO producing cells by 40%, yet still generated an equivalent growth yield. High nitrate also shortened the culture time for sMMO containing cells by approximately 25%, but it lowered their biomass yield by 26%. Upon storage for 5 weeks at room temperature, washed resting-state cells retained 90% and 70% of their H(2)-driven sMMO and pMMO activity, respectively. This makes their practical use quite feasible. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Poly-beta-hydroxybutyrate (PHB) accumulation in the unicellular cyanobacterium, Synechocystis sp. PCC 6803, was studied under various cultural and nutritional conditions. Under controlled condition, cells harvested at the stationary phase of growth depicted maximum accumulation of PHB, i.e., 4.5% (w/w of dry cells) as compared to lag (1.8%) or logarithmic (2.9%) phases of cultures. A temperature range of 28-32 degrees C and pH between 7.5 and 8.5 were preferred for PHB accumulation. Cells cultivated under regular light-dark cycles accumulated more PHB (4.5%) than those grown under continuous illumination (2.4%). Nitrogen and phosphorus starvation stimulated PHB accumulation up to the tune of 9.5 and 11% (w/w of dry cells), respectively. Synechocystis cells pre-grown in glucose (0.1%)-supplemented BG-11 medium when subjected to P-deficiency in presence of acetate (0.4%), PHB accumulation was boosted up to 29% (w/w of dry cells), the value almost 6-fold higher with respect to photoautotrophic condition. Fishpond discharges were found as suitable media for PHB accumulation in the test cyanobacterium.  相似文献   

6.
A novel corrosion-resistant bioreactor composed of polyetherether ketone (PEEK), tech glass and silicium nitrite ceramics was constructed and applied for the cultivation of two newly isolated, extremely halophilic archaea producing poly(γ-glutamic acid) (PGA), or poly(β-hydroxy butyric acid) (PHB), respectively. These bacteria were isolated from hypersaline soil close to Aswan (Egypt). The isolate strain 40, which is related to the genus Natrialba, produced large amounts of PGA when cultivated on solid medium. Culture conditions were optimised applying the corrosion-resistant bioreactor. PGA production was dependent on NaCl concentration and occurred about at 20% (w/v) NaCl in the medium. A maximum cell density of about 1.6 g cell dry matter/l was obtained when the bioreactor was stirred and aerated in a batch fermentation process using proteose-peptone medium. The supernatant was monitored with respect to PGA formation, and after 90 h a maximum of 470 mg/l culture volume was detected by HPLC analysis. Culture conditions were optimized for the isolate 56, which accumulated PHB as intracellular granules. Batch fermentations in the stirred and aerated bioreactor applying acetate and n-butyric acid as carbon sources led to cell density of 2.28 g cell dry matter/l and a maximum PHB accumulation contributing to about 53% of cellular dry weight. About 4.6 g PHB were isolated from 10.6 g dried cells of strain 56, which exhibited a weight average molar mass of 2.3 × 105 g mol−1 and a polydispersity of about 1.4. Received: 3 December 1999 / Received revision: 22 February 2000 / Accepted: 25 February 2000  相似文献   

7.
Poly-(R)-3-hydroxybutyric acid (PHB) was synthesized anaerobically in recombinant Escherichia coli. The host anaerobically accumulated PHB to more than 50% of its cell dry weight during cultivation in either growth or nongrowth medium. The maximum specific PHB production rate during growth-associated synthesis was approximately 2.3 +/- 0.2 mmol of PHB/g of residual cell dry weight/h. The by-product secretion profiles differed significantly between the PHB-synthesizing strain and the control strain. PHB production decreased acetate accumulation for both growth and nongrowth-associated PHB synthesis. For instance under nongrowth cultivation, the PHB-synthesizing culture produced approximately 66% less acetate on a glucose yield basis as compared to a control culture. A theoretical biochemical network model was used to provide a rational basis to interpret the experimental results like the fermentation product secretion profiles and to study E. coli network capabilities under anaerobic conditions. For example, the maximum theoretical carbon yield for anaerobic PHB synthesis in E. coli is 0.8. The presented study is expected to be generally useful for analyzing, interpreting, and engineering cellular metabolisms.  相似文献   

8.
A recombinant E. coli strain (K24K) was constructed and evaluated for poly(3-hydroxybutyrate) (PHB) production from whey and corn steep liquor as main carbon and nitrogen sources. This strain bears the pha biosynthetic genes from Azotobacter sp. strain FA8 expressed from a T5 promoter under the control of the lactose operator. K24K does not produce the lactose repressor, ensuring constitutive expression of genes involved in lactose transport and utilization. PHB was efficiently produced by the recombinant strain grown aerobically in fed-batch cultures in a laboratory scale bioreactor on a semisynthetic medium supplemented with the agroindustrial by-products. After 24 h, cells accumulated PHB to 72.9% of their cell dry weight, reaching a volumetric productivity of 2.13 g PHB per liter per hour. Physical analysis of PHB recovered from the recombinants showed that its molecular weight was similar to that of PHB produced by Azotobacter sp. strain FA8 and higher than that of the polymer from Cupriavidus necator and that its glass transition temperature was approximately 20 degrees C higher than those of PHBs from the natural producer strains.  相似文献   

9.
The production of poly-beta-hydroxybutyrate (PHB) by Alcaligenes eutrophus DSM 545 in a cyclone bioreactor was compared using various culture methods: batch, fed-batch, and self-cycling fermentation (SCF) with and without extended periods of nutrient deprivation. SCF is a semi-continuous method that results in a nutrient limitation for every successive generation of cells and, therefore, may have advantages for products whose formation follow secondary metabolite kinetics. Use of the SCF technique without extended nutrient deprivation produced a PHB concentration of 1.2 g L(-1) as 40% of the biomass dry weight. With nitrogen deprivation for 4 or 6 h, the concentration of PHB decreased when compared to the standard SCF technique. However, nitrogen deprivation periods of 8 h resulted in an increase in PHB concentration to 2.7 g L(-1) or 59% of the biomass dry weight. The nutrient cycling may act to repress PHB accumulation during periods of nitrogen deprivation, unless a time threshold has been reached, after which PHB accumulation occurs as in normal batch culture. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 815-820, 1997.  相似文献   

10.
Poly-(R)-3-hydroxybutyric acid (PHB) was synthesized anaerobically in recombinant Escherichia coli. The host anaerobically accumulated PHB to more than 50% of its cell dry weight during cultivation in either growth or nongrowth medium. The maximum specific PHB production rate during growth-associated synthesis was approximately 2.3 ± 0.2 mmol of PHB/g of residual cell dry weight/h. The by-product secretion profiles differed significantly between the PHB-synthesizing strain and the control strain. PHB production decreased acetate accumulation for both growth and nongrowth-associated PHB synthesis. For instance under nongrowth cultivation, the PHB-synthesizing culture produced approximately 66% less acetate on a glucose yield basis as compared to a control culture. A theoretical biochemical network model was used to provide a rational basis to interpret the experimental results like the fermentation product secretion profiles and to study E. coli network capabilities under anaerobic conditions. For example, the maximum theoretical carbon yield for anaerobic PHB synthesis in E. coli is 0.8. The presented study is expected to be generally useful for analyzing, interpreting, and engineering cellular metabolisms.  相似文献   

11.
Summary Silver-tolerant microoganisms were isolated from soil materials of a silver mine. The bacterial count decreased approximately linearly with increasing silver concentration. The fungal count, however, remained almost constant in all flasks, up to a concentration of 1 mM silver. At 10 mM Ag+ (about 1 g/l) and more, neither bacterial nor fungal growth could be observed.All silver-tolerant isolates were tested for silver accumulation capacity. Bacteria accumulated a mean 23 mg Ag+/g dry weight, hyphomycetes 6.7 mg/g dry wt. and yeasts 0.46 mg/g dry wt. The accumulation process of the hyphomycete with the highest accumulation capacity (20 mg/g dry wt.) was shown to be completed after about 30 min. Between 4°C and 80°C the process was nearly independent of temperature; as to the optimum pH, a slight preference for the neutral range was observed. Mycelium destroyed by formaldehyde solution showed the same accumulation pattern. These results would indicate a binding of silver to the surface of the cell.  相似文献   

12.
A strain of poly(β-hydroxybutyrate) (PHB)-accumulating bacterium was isolated from the soil in Alaska of USA, identified as Pseudomonas fluorescens, and designated as strain A2a5. The organism grew at temperatures below 30°C, and accumulated a large amount of granules in its cells when it was cultured in the sugarcane liquor medium. The purified sample from cells was determined as PHB by gas chromatographic and nuclear magnetic resonance analysis of polyesters. The cell density of the culture in shaking bottles reached OD(600)=155 with PHB concentration of 31gl(-1). In 5l bioreactor, a maximum cell dry weight (CDW) of 32gl(-1) with a PHB concentration of 22gl(-1) was obtained, and the PHB content was up to 70% and productivity was 0.23gl(-1)h(-1).  相似文献   

13.
Seven gene loci encoding putative proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS) were identified in the genome of Ralstonia eutropha H16 by in silico analysis. Except the N-acetylglucosamine-specific PEP-PTS, an additional complete PEP-PTS is lacking in strain H16. Based on these findings, we generated single and multiple deletion mutants defective mainly in the PEP-PTS genes to investigate their influence on carbon source utilization, growth behavior, and poly(3-hydroxybutyrate) (PHB) accumulation. As supposed, the H16 ΔfrcACB and H16 ΔnagFEC mutants exhibited no growth when cultivated on fructose and N-acetylglucosamine, respectively. Furthermore, a transposon mutant with a ptsM-ptsH insertion site did not grow on both carbon sources. The observed phenotype was not complemented, suggesting that it results from an interaction of genes or a polar effect caused by the Tn5::mob insertion. ptsM, ptsH, and ptsI single, double, and triple mutants stored much less PHB than the wild type (about 10 to 39% [wt/wt] of cell dry weight) and caused reduced PHB production in mutants lacking the H16_A2203, H16_A0384, frcACB, or nagFEC genes. In contrast, mutant H16 ΔH16_A0384 accumulated 11.5% (wt/wt) more PHB than the wild type when grown on gluconate and suppressed partially the negative effect of the ptsMHI deletion on PHB synthesis. Based on our experimental data, we discussed whether the PEP-PTS homologous proteins in R. eutropha H16 are exclusively involved in the complex sugar transport system or whether they are also involved in cellular regulatory functions of carbon and PHB metabolism.  相似文献   

14.
Halomonas boliviensis LC1 is able to accumulate poly(β-hydroxybutyrate) (PHB) under conditions of excess carbon source and depletion of essential nutrients. This study was aimed at an efficient production of PHB by growing H. boliviensis to high cell concentrations in batch cultures. The effect of ammonium, phosphate, and yeast extract concentrations on cell concentration [cell dry weight (CDW)] and PHB content of H. boliviensis cultured in shake flasks was assayed using a factorial design. High concentrations of these nutrients led to increments in cell growth but reduced the PHB content to some extent. Cultivations of H. boliviensis under controlled conditions in a fermentor using 1.5% (w/v) yeast extract as N source, and intermittent addition of sucrose to provide excess C source, resulted in a polymer accumulation of 44 wt.% and 12 g l−1 CDW after 24 h of cultivation. Batch cultures in a fermentor with initial concentrations of 2.5% (w/v) sucrose and 1.5% (w/v) yeast extract, and with induced oxygen limitation, resulted in an optimum PHB accumulation, PHB concentration and CDW of 54 wt.%, 7.7 g l−1 and 14 g l−1, respectively, after 19 h of cultivation. The addition of casaminoacids in the medium increased the CDW to 14.4 g l−1 in 17 h but reduced the PHB content in the cells to 52 wt.%.  相似文献   

15.
A recombinant E. coli strain (K24K) was constructed and evaluated for poly(3-hydroxybutyrate) (PHB) production from whey and corn steep liquor as main carbon and nitrogen sources. This strain bears the pha biosynthetic genes from Azotobacter sp. strain FA8 expressed from a T5 promoter under the control of the lactose operator. K24K does not produce the lactose repressor, ensuring constitutive expression of genes involved in lactose transport and utilization. PHB was efficiently produced by the recombinant strain grown aerobically in fed-batch cultures in a laboratory scale bioreactor on a semisynthetic medium supplemented with the agroindustrial by-products. After 24 h, cells accumulated PHB to 72.9% of their cell dry weight, reaching a volumetric productivity of 2.13 g PHB per liter per hour. Physical analysis of PHB recovered from the recombinants showed that its molecular weight was similar to that of PHB produced by Azotobacter sp. strain FA8 and higher than that of the polymer from Cupriavidus necator and that its glass transition temperature was approximately 20°C higher than those of PHBs from the natural producer strains.  相似文献   

16.
The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes.  相似文献   

17.
A strain of Bacillus sp. coded JMa5 was isolated from molasses contaminated soil. The strain was able to grow at a temperature as high as 45°C and in 250 g/l molasses although the optimal growth temperature was 35–37°C. Cell density reached 30 g/l 8 h after inoculation in a batch culture with an initial concentration of 210 g/l molasses. Under fed-batch conditions, the cells grew to a dry weight of 70 g/l after 30 h of fermentation. The strain accumulated 25–35%, (w/w) polyhydroxybutyrate (PHB) during fermentation. PHB accumulation was a growth-associated process. Factors that normally promote PHB production include high ratios of carbon to nitrogen, and carbon to phosphorus in growth media. Low dissolved oxygen supply resulted in sporulation, which reduced PHB contents and dry weights of the cells. It seems that sporulation induced by reduced supply of nutrients is the reason that PHB content is generally low in the Bacillus strain.  相似文献   

18.
We assessed the effects of different arcA mutations on poly(3-hydroxybutyrate) (PHB) synthesis in recombinant Escherichia coli strains carrying the pha synthesis genes from Azotobacter sp. strain FA8. The arcA mutations used were an internal deletion and the arcA2 allele, a leaky mutation for some of the characteristics of the Arc phenotype which confers high respiratory capacity. PHB synthesis was not detected in the wild-type strain in shaken flask cultures under low-oxygen conditions, while ArcA mutants gave rise to polymer accumulation of up to 24% of their cell dry weight. When grown under microaerobic conditions in a bioreactor, the arcA deletion mutant reached a PHB content of 27% +/- 2%. Under the same conditions, higher biomass and PHB concentrations were observed for the strain bearing the arcA2 allele, resulting in a PHB content of 35% +/- 3%. This strain grew in a simple medium at a specific growth rate of 0.69 +/- 0.07 h(-1), whereas the deletion mutant needed several nutritional additives and showed a specific growth rate of 0.56 +/- 0.06 h(-1). The results presented here suggest that arcA mutations could play a role in heterologous PHB synthesis in microaerobiosis.  相似文献   

19.
Azotobacter chroococcum MAL-201, when grown under nitrogen-free conditions with excess glucose, accumulated poly-β-hydroxybutyric acid amounting to 75% of cell dry weight at the late exponential phase. This led to induction of encystment, which increased steadily with concomitant intracellular degradation of the polymer. Increase in encystment and PHB production were parallel up to 0.5% (wt/vol) glucose. Further increase in glucose reduced cyst formation but enhanced PHB accumulation. Replacement of glucose by n-butyl alcohol and metabolically related compounds identified crotonate as the best encystment inducer followed by β-hydroxybutyrate and butyrate, but PHB production was inhibited in general. Supplementation of medium with these compounds enhanced the onset of encystment, and only β-hydroxybutyrate increased PHB accumulation significantly. Received: 23 April 1997 / Accepted: 31 May 1997  相似文献   

20.
Soluble methane monooxygenase (sMMO) maximization studies were carried out as part of a larger effort directed towards the development and optimization of an aqueous phase, multistage, membrane bioreactor system for treatment of polluted groundwater. A modified version of the naphthalene oxidation assay was utilized to determine the effects of methane:oxygen ratio, nutrient supply, and supplementary carbon sources on maximizing and maintaining sMMO activity inMethylosinus trichosporium OB3b.Methylosinus trichosporium OB3b attained peak sMMO activity (275–300 nmol of naphthol formed h–1 mg of protein–1 at 25°C) in early stationary growth phase when grown in nitrate mineral salts (NMS) medium. With the onset of methane limitation however, sMMO activity rapidly declined. It was possible to define a simplified nitrate mineral salts (NMS) medium, containing nitrate, phosphate and a source of iron and magnesium, which allowed reasonably high growth rates (max 0.08 h–1) and growth yields (0.4–0.5 g cells/g CH4) and near maximal activities of sMMO. In long term batch culture incubations sMMO activity reached a stable plateau at approximately 45–50% of the initial peak level and this was maintained over several weeks. The addition of d-biotin, pyridoxine, and vitamin B12 (cyanocobalamin) increased the activity level of sMMO in actively growing methanotrophs by 25–75%. The addition of these growth factors to the simplified NMS medium was found to increase the plateau sMMO level in long term batch cultures up to 70% of the original peak activity.Abbreviations sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - NMS nitrate mineral salts - TCE trichloroethene - NADH reduced nicotinamide adenine dinucleotide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号