首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SUMMARY: Combo is a comparative genome browser that provides a dynamic view of whole genome alignments along with their associated annotations. Combo provides two different visualization perspectives. The perpendicular (dot plot) view provides a dot plot of genome alignments synchronized with a display of genome annotations along each axis. The parallel view displays two genome annotations horizontally, synchronized through a panel displaying local alignments as trapezoids. Users can zoom to any resolution, from whole chromosomes to individual bases. They can select, highlight and view detailed information from specific alignments and annotations. Combo is an organism agnostic and can import data from a variety of file formats. AVAILABILITY: Combo is integrated as part of the Argo Genome Browser which also provides single-genome browsing and editing capabilities. Argo is written in Java, runs on multiple platforms and is freely available for download at http://www.broad.mit.edu/annotation/argo/.  相似文献   

2.
3.

Background  

There is considerable interest in the development of methods to efficiently identify all coding variants present in large sample sets of humans. There are three approaches possible: whole-genome sequencing, whole-exome sequencing using exon capture methods, and RNA-Seq. While whole-genome sequencing is the most complete, it remains sufficiently expensive that cost effective alternatives are important.  相似文献   

4.
In vitro DNA amplification methods, such as polymerase chain reaction (PCR), rely on synthetic oligonucleotide primers for initiation of the reaction. In vivo, primers are synthesized on-template by DNA primase. The bacteriophage T7 gene 4 protein (gp4) has both primase and helicase activities. In this study, we report the development of a primase-based Whole Genome Amplification (pWGA) method, which utilizes gp4 primase to synthesize primers, eliminating the requirement of adding synthetic primers. Typical yield of pWGA from 1 ng to 10 ng of human genomic DNA input is in the microgram range, reaching over a thousand-fold amplification after 1 h of incubation at 37 degrees C. The amplification bias on human genomic DNA is 6.3-fold among 20 loci on different chromosomes. In addition to amplifying total genomic DNA, pWGA can also be used for detection and quantification of contaminant DNA in a sample when combined with a fluorescent reporter dye. When circular DNA is used as template in pWGA, 10(8)-fold of amplification is observed from as low as 100 copies of input. The high efficiency of pWGA in amplifying circular DNA makes it a potential tool in diagnosis and genotyping of circular human DNA viruses such as human papillomavirus (HPV).  相似文献   

5.
6.
Restauro-G: A Rapid Genome Re-Annotation System for Comparative Genomics   总被引:1,自引:0,他引:1  
of complete genome sequences submitted directly from sequencing projects are diverse in terms of annotation strategies and update frequencies. These inconsistencies make comparative studies difficult. To allow rapid data preparation of a large number of complete genomes, automation and speed are important for genome re-annotation. Here we introduce an open-source rapid genome re-annotation software system, Restauro-G, specialized for bacterial genomes. Restauro-G re-annotates a genome by similarity searches utilizing the BLASTLike Alignment Tool, referring to protein databases such as UniProt KB, NCBI nr, NCBI COGs, Pfam, and PSORTb. Re-annotation by Restauro-G achieved over 98% accuracy for most bacterial chromosomes in comparison with the original manually curated annotation of EMBL releases. Restauro-G was developed in the generic bioinformatics workbench G-language Genome Analysis Environment and is distributed at http://restauro-g.iab.keio.ac.jp/ under the GNU General Public License.  相似文献   

7.
蚯蚓被喻为土壤中的“生态系统工程师”, 具有高度的多样性且在全世界都有分布, 被用作土壤健康的指示生物。蚯蚓具有极强的环境适应能力, 在不断适应的过程中促进了自身基因组的进化。本文对近年来蚯蚓全基因组以及线粒体基因组的研究进展进行了综述。蚯蚓全基因组的测序、拼装和分析为研究蚯蚓生态学、污染物对蚯蚓致毒的分子机制、免疫防御的分子机制、蚯蚓再生的分子机制等奠定基础。而线粒体基因组多应用于蚯蚓分子系统发育方面的研究, 目前已有多种蚯蚓通过线粒体基因组测序完成了物种的鉴定。本文建议今后重点开展以下几方面的研究: (1)针对现有的4种蚯蚓全基因组测序结果, 进一步进行比较基因组学、进化基因组学和功能基因组学的研究。(2)完善不同种蚯蚓的基因文库和表达序列标签。(3)建立线粒体基因组、全基因组与蚯蚓物种多样性的关联分析。  相似文献   

8.

Background  

Bisulfite sequencing is a powerful technique to study DNA cytosine methylation. Bisulfite treatment followed by PCR amplification specifically converts unmethylated cytosines to thymine. Coupled with next generation sequencing technology, it is able to detect the methylation status of every cytosine in the genome. However, mapping high-throughput bisulfite reads to the reference genome remains a great challenge due to the increased searching space, reduced complexity of bisulfite sequence, asymmetric cytosine to thymine alignments, and multiple CpG heterogeneous methylation.  相似文献   

9.
SciRoKo is a user-friendly software tool for the identification of microsatellites in genomic sequences. The combination of an extremely fast search algorithm with a built-in summary statistic tool makes SciRoKo an excellent tool for full genome analysis. Compared to other already existing tools, SciRoKo also allows the analysis of compound microsatellites. AVAILABILITY: free for use: www.kofler.or.at/Bioinformatics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

10.
High-throughput sequencing is increasingly being used in combination with bisulfite (BS) assays to study DNA methylation at nucleotide resolution. Although several programmes provide genome-wide alignment of BS-treated reads, the resulting information is not readily interpretable and often requires further bioinformatic steps for meaningful analysis. Current post-alignment BS-sequencing programmes are generally focused on the gene-specific level, a restrictive feature when analysis in the non-coding regions, such as enhancers and intergenic microRNAs, is required. Here, we present Genome Bisulfite Sequencing Analyser (GBSA—http://ctrad-csi.nus.edu.sg/gbsa), a free open-source software capable of analysing whole-genome bisulfite sequencing data with either a gene-centric or gene-independent focus. Through analysis of the largest published data sets to date, we demonstrate GBSA’s features in providing sequencing quality assessment, methylation scoring, functional data management and visualization of genomic methylation at nucleotide resolution. Additionally, we show that GBSA’s output can be easily integrated with other high-throughput sequencing data, such as RNA-Seq or ChIP-seq, to elucidate the role of methylated intergenic regions in gene regulation. In essence, GBSA allows an investigator to explore not only known loci but also all the genomic regions, for which methylation studies could lead to the discovery of new regulatory mechanisms.  相似文献   

11.
12.
13.
MapLinker is an analysis tool, as well as a browsing interface, that facilitates integration of whole genome sequence assembly with a clone-based physical map. Using the locations of sequence markers on the physical map, MapLinker generates a tentative sequence map of the genome that serves to verify the map and to guide genome-wide finishing.  相似文献   

14.
An outbreak associated with Streptococcus suis infection in humans emerged in Sichuan province, China in 2005. The outbreak is atypical for the apparent large number of human cases, high fatality rate and geographical spread. To determine whether the bacterium has changed, we compared both human and animal isolates from the Sichuan outbreak with those collected previously within China and in other countries using whole genome PCR scanning (WGPScaning) comparative sequencing of several known virulence factor genes and multilocus sequence typing (MLST) analysis. WGPScanning analysis showed that all primer pairs yielded PCR products of the expected sizes in all four strains tested. The nucleotide sequences of all the detected virulence factor genes are identical in the four strains and MLST results showed that the four isolates studied and reference strain all belonged to the ST1 complex. No new genetic changes were found in the genome structure of the isolates from this Sichuan outbreak. Contributed equally to this work Supported by the National Key Technologies Research and Development Program (Grant No. 2005BA711A09) from the Ministry of Science and Technology of China  相似文献   

15.
A method was developed for genome analysis of phytoplasmas, bacterial plant pathogens that cannot be cultivated in vitro in cell-free media. The procedure includes a CsCl-bisbenzimide gradient buoyant centrifugation followed by polymerase chain reaction (PCR)-mediated whole genome amplification. The latter step involves digestion of the DNA by a restriction enzyme with an A/T-rich recognition sequence. Due to the different A/T content in the DNA of the pathogen and its plant host, the fragments originating from phytoplasma are shorter and are preferentially amplified in the PCR reaction. Products obtained were cloned and screened by dot-blot hybridization. Results showed that about 90% of recombinant clones appeared to harbor phytoplasma specific DNA inserts. Sequencing of randomly selected clones was carried out and comparison with the NCBI database confirmed the bacterial origin for the sequences, which have been assigned a putative function. The origin of the recombinant clones was further confirmed by the generation of specific amplicons from the phytoplasma-infected plant and not from the healthy control, using PCR primers devised from the sequences of the recombinant clones. This method could be used for genome-wide comparisons between phytoplasmas.  相似文献   

16.
17.
DNA methylation plays a central role in genomic regulation and disease. Sodium bisulfite treatment (SBT) causes unmethylated cytosines to be sequenced as thymine, which allows methylation levels to reflected in the number of ‘C’-‘C’ alignments covering reference cytosines. Di-base color reads produced by lifetech’s SOLiD sequencer provide unreliable results when translated to bases because single sequencing errors effect the downstream sequence. We describe FadE, an algorithm to accurately determine genome-wide methylation rates directly in color or nucleotide space. FadE uses SBT unmethylated and untreated data to determine background error rates and incorporate them into a model which uses Newton–Raphson optimization to estimate the methylation rate and provide a credible interval describing its distribution at every reference cytosine. We sequenced two slides of human fibroblast cell-line bisulfite-converted fragment library with the SOLiD sequencer to investigate genome-wide methylation levels. FadE reported widespread differences in methylation levels across CpG islands and a large number of differentially methylated regions adjacent to genes which compares favorably to the results of an investigation on the same cell-line using nucleotide-space reads at higher coverage levels, suggesting that FadE is an accurate method to estimate genome-wide methylation with color or nucleotide reads. http://code.google.com/p/fade/.  相似文献   

18.

Background  

With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes) is not feasible without new bioinformatics tools.  相似文献   

19.
Rates of genome evolution and branching order from whole genome analysis   总被引:2,自引:0,他引:2  
Accurate estimation of any phylogeny is important as a framework for evolutionary analysis of form and function at all levels of organization from sequence to whole organism. Using alignments of nonrepetitive components of opossum, human, mouse, rat, and dog genomes we evaluated two alternative tree topologies for eutherian evolution. We show with very high confidence that there is a basal split between rodents (as represented by the mouse and rat) and a branch joining primates (as represented by humans) and carnivores (as represented by dogs), consistent with some but not the most widely accepted mammalian phylogenies. The result was robust to substitution model choice with equivalent inference returned from a spectrum of models ranging from a general time reversible model, a model that treated nucleotides as either purines and pyrimidines, and variants of these that incorporated rate heterogeneity among sites. By determining this particular branching order we are able to show that the rate of molecular evolution is almost identical in rodent and carnivore lineages and that sequences evolve approximately 11%-14% faster in these lineages than in the primate lineage. In addition by applying the chicken as outgroup the analyses suggested that the rate of evolution in all eutherian lineages is approximately 30% slower than in the opossum lineage. This pattern of relative rates is inconsistent with the hypothesis that generation time is an important determinant of substitution rates and, by implication, mutation rates. Possible factors causing rate differences between the lineages include differences in DNA repair and replication enzymology, and shifts in nucleotide pools. Our analysis demonstrates the importance of using multiple sequences from across the genome to estimate phylogeny and relative evolutionary rate in order to reduce the influence of distorting local effects evident even in relatively long sequences.  相似文献   

20.
Whole genome DNA microarrays were constructed and used to investigate genomic diversity in 18 Campylobacter jejuni strains from diverse sources. New algorithms were developed that dynamically determine the boundary between the conserved and variable genes. Seven hypervariable plasticity regions (PR) were identified in the genome (PR1 to PR7) containing 136 genes (50%) of the variable gene pool. When comparisons were made with the sequenced strain NCTC11168, the number of absent or divergent genes ranged from 2.6% (40 genes) to 10.2% (163) and in total 16.3% (269) of the genes were variable. PR1 contains genes important in the utilisation of alternative electron acceptors for respiration and may confer a selective advantage to strains in restricted oxygen environments. PR2, 3 and 7 contain many outer membrane and periplasmic proteins and hypothetical proteins of unknown function that might be linked to phenotypic variation and adaptation to different ecological niches. PR4, 5 and 6 contain genes involved in the production and modification of antigenic surface structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号