首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous investigations have shown that untargeted liposomes, in which methotrexate is anchored to the lipid bilayers as methotrexate-γ-dimyristoylphosphatidylethanolamine (methotrexate-γ-DMPE), can inhibit in vitro cell proliferation. To test the possibility that this inhibition may involve extracellular metabolism of methotrexate-y-DMPE, we have degraded it chemically (dilute alkali) or enzymatically (phospholipase A2, phospholipase C, phospholipase C plus phosphatase), and assayed the products using human lymphoblastoid T cells or a subline that has a defective methotrexate transport system. Neither methotrexate-y-(lmyristoyO-glycerophosphorylethanolamine, methotrexate-y-glycerophosphorylethanolamine, methotrexatey-phosphorylethanolamine, nor methotrexate-γ-ethanolamine resemble methotrexate-γ-DMPE sensitized liposomes or the free derivative in their ability to block tritiated deoxyuridine incorporation into DNA. When added extracellularly, these putative metabolites manifest a higher ID50 concentration and/or, unlike the liposomes or unincorporated methotrexate-γ-DMPE, utilize the methotrexate transport system to enter cells. Additionally, we have synthesized methotrexate-γ-dihexadecylphosphatidylethanolamine and methotrexate-γ-hexadecylphosphorylethanolamine, analogs of methotrexate-γ-DMPE that cannot be hydrolyzed by phospholipases A2, C and D; liposomes prepared with these derivatives are markedly less potent cytotoxic agents than methotrexate-γ-DMPE sensitized liposomes. All together, these results are consistent with the conclusion that methotrexate-γ-DMPE must undergo intracellular metabolism to exert optimal inhibition; they also bear on possible mechanisms by which methotrexate-γ-DMPE may enter cells.  相似文献   

2.
Liposomes, which were prepared with the three methotrexate (MTX)-dimyristoylphosphatidylethanolamine (DMPE) derivatives described in the preceding paper, were tested for their ability to block proliferation of mouse 3T3 and L1210 cells. Tritiated deoxyuridine incorporation into DNA could be completely inhibited by liposomes sensitized with MTX-DMPE I (MTX-gamma-DMPE). Under similar conditions, liposomes containing MTX-DMPE II (MTX-alpha-DMPE) and MTX-DMPE III (MTX-alpha, gamma-diDMPE) produced partial and no inhibition, respectively. These effects on cell growth were paralleled by the capacity of liposomes, prepared with each of the DMPE derivatives, to inhibit dihydrofolate reductase isolated from L1210 cells. Analogous experiments with the three corresponding glycerophosphorylethanolamine (glyceroPE) analogs also indicated that MTX-glyceroPE I was the most effective inhibitor of both cell proliferation and enzymatic activity. However, MTX-DMPE I sensitized liposomes apparently enter target cells as a consequence of phagocytosis, and not via the ubiquitous methotrexate transport system that is employed by MTX-glyceroPE I. For example, novel use of thiamine pyrophosphate showed that this compound had no influence on inhibition of cell proliferation due to liposomes, whereas thiamine pyrophosphate could completely antagonize the inhibitory effects of methotrexate and MTX-glyceroPE I. The results are discussed with reference to possible therapeutic advantages of these liposomes.  相似文献   

3.
We have prepared liposomes containing methotrexate-gamma-dimyristoylphosphatidylethanolamine (MTX-DMPE liposomes), to which protein A was covalently coupled, permitting specific association of these liposomes in vitro with murine cells preincubated with relevant protein A-binding monoclonal antibodies. In the absence of antibody the presence of externally-oriented methotrexate (MTX) in MTX-DMPE liposomes did not result in greater binding to cells than liposomes made without MTX-gamma-DMPE. Derivation of methotrexate with phospholipid permits enhanced drug-liposome association. These liposomes are more resistant than conventional liposomes to repeated cycles of freezing and thawing. MTX-DMPE liposomes are comparable to antibody-targeted liposomes made with encapsulated water-soluble methotrexate both with respect to specific binding to target cells and drug effect. The inhibitory effects of MTX-liposomes, as well as free MTX, were reversible by either thiamin pyrophosphate (Tpp) or N5-formyltetrahydrofolate (F-THF), while the effects of MTX-DMPE liposomes were reversed only by N5-formyltetrahydrofolate. This suggests that the toxicity of non-targeted MTX-liposomes may be due to leakage of the encapsulated MTX. The absence of an effect of thiamin pyrophosphate on non-targeted MTX-DMPE liposomes indicates that they do not enter into the cell via the normal folate transport system.  相似文献   

4.
We have prepared liposomes containing methotrexate-γ-dimyristoylphosphatidylethanolamine (MTX-DMPE liposomes), to which protein A was covalently coupled, permitting specific association of these liposomes in vitro with murine cells preincubated with relevant protein A-binding monoclonal antibodies. In the absence of antibody the presence of externally-oriented methotrexate (MTX) in MTX-DMPE liposomes did not result in greater binding to cells than liposomes made without MTX-γ-DMPE. Derivation of methotrexate with phospholipid permits enhanced drug-liposome association. These liposomes are more resistant than conventional liposomes to repeated cycles of freezing and thawing. MTX-DMPE liposomes are comparable to antibody-targeted liposomes made with encapsulated water-soluble methotrexate both with respect to specific binding to target cells and drug effect. The inhibitory effects off MTX-liposomes, as well as free MTX, were reversible by either thiamin pyrophosphate (Tpp) or N5-formyltetrahydrofolate (F-THF), while the effects of MTX-DMPE liposomes were reversed only by N5-formyltetrahydrofolate. This suggests that the toxicity of non-targeted MTX-liposomes may be due to leakage of the encapsulated MTX. The absence of an effect of thiamin pyrophosphate on non-targeted MTX-DMPE liposomes indicates that they do not enter into the cell via the normal folate transport system.  相似文献   

5.
This study compares the ability of methotrexate and liposomes, in which the drug is anchored to the lipid bilayers via methotrexate-gamma-dimyristoylphosphatidylethanolamine, to inhibit proliferation of human leukemic cells (CEM/O) and cells derived from this line that are resistant to methotrexate because of either a defective transport system (CEM/MTX cells) or elevated levels of dihydrofolate reductase (CEM/R1 cells). Whereas CEM/O and CEM/MTX cells show a 120-fold difference in their susceptibility to methotrexate (as measured by the incorporation of tritiated deoxyuridine into DNA), both lines are equally sensitive to the liposomes. In contrast, proliferation of CEM/MTX cells is not inhibited significantly by methotrexate-gamma-glycerophosphorylethanolamine (MTX-gamma-glyceroPE), the water-soluble analog of MTX-gamma-DMPE. Both the ability of the liposomes to circumvent the transport defect, and the inability of MTX-gamma-glyceroPE to do so, were anticipated on the basis of previous experiments which show that thiamine pyrophosphate could antagonize inhibition of mouse 3T3 and L1210 cell proliferation by methotrexate and MTX-gamma-glyceroPE, but not inhibition by liposomes. Human cells (CEM/O) behave similarly. The present experiments also suggest that liposomes prepared with MTX-gamma-DMPE can partially reverse the methotrexate resistance of CEM/R1 cells that is due to overproduction of the target enzyme.  相似文献   

6.
Summary Interaction of positively (phosphatidylcholine/stearylamine 51) or negatively (phosphatidylcholine/stearic acid 51) charged liposomes with Ehrlich ascites tumor cells for 1–5 min increases or decreases, respectively, the bidirectional fluxes of the folic acid analog, methotrexate. These effects on influx and efflux appear to be symmetrical since the liposomes do not change the intracellular level of methotrexate at the steady state. Influx kinetics show that these alterations result from an increase or decrease in theV max with no change in theK m in . These effects appear to be specific for the methotrexate-tetrahydrofolate carrier system since the transport of other compounds which utilize this carrier, aminopterin, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate, is affected similarly to methotrexate, whereas, the transport of folic acid, a compound similar in structure and charge but not significantly transported by this carrier is unaffected by liposomes. Once cells are exposed to charged liposomes, the effects on methotrexate transport cannot be reversed by washing the cells free of the extracellular liposomes. If, however, cells are exposed to liposomes of one charge, washed and then exposed to liposomes of the opposite charge, methotrexate influx is reversed to control rates. The effects of charged liposomes on methotrexate influx were not abolished by treating the cells with neuraminidase, metabolic inhibitors or lowering the temperature to 4°C. Studies on the uptake of [14C] liposomes show that these effects are not proportional to the total amount of lipid associated with the cell but result from an initial rapid liposome-cell association that is not dependent on temperature or energy metabolism nor related to cell surface charge.  相似文献   

7.
We have developed a two-compartment growth inhibition assay that can provide information about leakage, metabolism and delivery of liposome-dependent drugs under cell culture conditions, and at drug concentrations that are relevant to drug delivery. Two cell lines are grown in separate compartments separated from each other by a 0.1 micron polycarbonate membrane. The membrane allows free drugs to diffuse rapidly from one compartment to another, and does not allow liposomes to diffuse through. Liposomes are added to the first compartment, which contains target cells. The extent of leakage caused by these cells is determined by the growth inhibition of non-target cells in the second compartment. We show that methotrexate and methotrexate-gamma-aspartate leak rapidly and almost completely when encapsulated in phosphatidylglycerol/cholesterol (67:33) liposomes. In contrast, there is only 42% leakage when the drugs are encapsulated in distearoylphosphatidylglycerol/cholesterol (67:33) liposomes. We also demonstrate that the target cells (CV1-P) may partially degrade encapsulated methotrexate-gamma-aspartate to methotrexate. Therefore, methotrexate-gamma-aspartate may be a lysosomally cleaved pro-drug of methotrexate.  相似文献   

8.
Abstract

An in vitro liposome-cell association system has been developed that will allow the study of uptake and metabolism of liposomes by cultured cells at nanomolar lipid concentrations. The fate of cell associated liposomes is followed through the liposome encapsulated marker, methotrexate. Detection is based on the inhibition of dihydrofolate reductase by methotrexate, after its release from cells through boiling. Methotrexate in phospha-tidylglycerol (PG) liposomes is taken up by cells and then subsequently lost from the cells. Uptake is partially blocked by monensin. Loss from the cells is blocked by metabolic inhibitors, monensin, ammonium chloride, and chloroquine. Methotrexate in distearoylphosphatidylglycerol (DSPG) liposomes is taken up by cells slowly, and there is minimal lost of methotrexate after uptake. Pulse studies show that metabolism of PG liposomes after endocytosis is occurring at a much higher rate than that of DSPG liposomes, and substantial retention of encapsulated methotrexate occurs for both liposome compositions.  相似文献   

9.
Methotrexate transport in L1210 cells is highly sensitive to inhibition by p-chloromercuriphenylsulfonate (CMPS) and, to a lesser extent, by N-ethylmaleimide. A 50% reduction in the methotrexate influx rate occurred upon exposure of cells to 3 μM CMPS or 175 μM N-ethylmaleimide, while complete inhibition was achieved at higher levels of these agents. Dithiothreitol reversed the inhibition by CMPS, suggesting that a sulfhydryl residue is involved. This residue is apparently not located at the substrate binding site of the transport protein, since methotrexate failed to protect the system from inactivation by either CMPS or N-ethylmaleimide, and the transport protein retained the ability to bind substrate (at 4°C) after exposure to these inhibitors (at 37°C). Methotrexate efflux was also inhibited by CMPS (50% at 4 μM), indicating that both the uptake and efflux of methotrexate in L1210 cells occur via the same transport system. High concentrations of CMPS (greater than 20 μM) increased the efflux rate, apparently by damaging the cell membrane and allowing the passive diffusion of methotrexate out of the cell.  相似文献   

10.
The susceptibility of partially peroxidized liposomes of 2-[1-14C] linoleoylphosphatidylethanolamine ([14C]PE) to hydrolysis by cellular phospholipases was examined. [14C]PE was peroxidized by exposure to air at 37 degrees C, resulting in the formation of more polar derivatives, as determined by thin-layer chromatographic analysis. Hydrolysis of these partially peroxidized liposomes by lysosomal phospholipase C associated with cardiac sarcoplasmic reticulum, and by rat liver lysosomal phospholipase C, was greater than hydrolysis of non-peroxidized liposomes. By contrast, hydrolysis of liposomes by purified human synovial fluid phospholipase A2 or bacterial phospholipase C was almost completely inhibited by partial peroxidation of PE. Lysosomal phospholipase C preferentially hydrolyzed the peroxidized component of the lipid substrate which had accumulated during autoxidation. The major product recovered under these conditions was 2-monoacylglycerol, indicating sequential degradation by phospholipase C and diacylglycerol lipase. Liposomes peroxidized at pH 7.0 were more susceptible to hydrolysis by lysosomal phospholipases C than were liposomes peroxidized at pH 5.0, in spite of greater production of polar lipid after peroxidation at pH 5.0. Sodium bisulfite, an antioxidant and an inhibitor of lysosomal phospholipases, prevented: (1) lipid autoxidation, (2) hydrolysis of both non-peroxidized and peroxidized liposomes by sarcoplasmic reticulum and (3) loss of lipid phosphorus from endogenous lipids when sarcoplasmic reticulum was incubated at pH 5.0. These studies show that lipid peroxidation may modulate the susceptibility of phospholipid to attack by specific phospholipases, and may therefore be an important determinant in membrane dysfunction during injury. Preservation of membrane structural and functional integrity by antioxidants may result from inhibition of lipid peroxidation, which in turn may modulate cellular phospholipase activity.  相似文献   

11.
Methotrexate has been conjugated (amide bond) via either the alpha or gamma, or both alpha and gamma, glutamyl carboxyl groups to the amino function of dihexanoylphosphatidylethanolamine (C6C6PE) and 1-tetradecanoyl-2-hexanoylphosphatidylethanolamine (C14C6PE). These phospholipid prodrugs (either free or incorporated into liposomes) were compared with the corresponding ditetradecanoylphosphatidylethanolamine (C14C14PE) conjugates, some of whose properties have been described previously, for their ability to inhibit the proliferation of human leukemic cells (CEM/O) or cells derived therefrom (CEM/MTX) that are resistant to methotrexate because of a defective drug transport system. Regardless of chain length, the gamma conjugates were more effective than either the alpha or the alpha, gamma conjugates, in inhibiting growth of the parent cells, confirming initial experiments with mouse cells. Chain length had, however, a pronounced influence on the capacity of the various gamma derivatives to circumvent the transport defect. For example, CEM/MTX cells were 120-fold less susceptible than CEM/O cells to inhibition by either methotrexate or methotrexate-gamma-C6C6PE, whereas both cell lines were equally sensitive to methotrexate-gamma-C14C14PE. Although less potent than either of the foregoing, methotrexate-gamma-C14C6PE could partially by-pass the defective transport system. These results suggest that methotrexate-gamma-PE derivatives with appropriate acyl residues might be useful probes to investigate the mechanism by which phospholipids in general are able to traverse cell membranes.  相似文献   

12.
Summary Interaction of positively charged liposomes with Ehrlich ascites tumor cells increases the bidirectional transmembrane fluxes of the anionic folic acid analog, methotrexate. Negative liposomes reduce methotrexate influx. Stimulation of methotrexate influx by positively charged liposomes is time and concentration dependent, requiring at least a 5-min incubation with 2.5mm phosphatidylcholine containing 20% stearylamine for maximum effect. Stimulation is not appreciably reversed by washing the cells. Similar increases are observed for influx and efflux so that there is no change in the steady-state methotrexate electrochemical-potential difference across the cell membrane. The increase in influx appears to be a stimulation of the carrier-mediated transport process for methotrexate since both control and stimulated influx are abolished by the competitive inhibitor, 5-formyltetrahydrofolate or the sulfhydryl group inhibitor,p-chloromercuriphenylsulfonic acid and the Q10 of the system remains unchanged. Influx of 5-methyltetrahydrofolate, which shares the same transport carrier as methotrexate, is also stimulated. However, the transport of folic acid, which is structurally similar to methotrexate but does not utilize the carrier, is unaffected. The kinetic change induced by positively charged liposomes is an increase in theV ma in , while theK t in remains unchanged. Trans-stimulation of methotrexate influx by 5-formyltetrahydrofolate occurs to the same extent in the presence or absence of positively charged liposomes. The liposomes have no apparent effect on the intracellular water, the extracellular space, or the chloride distribution ratio. The data suggest that interaction of positively charged liposomes with Ehrlich ascites tumor cells accelerates the rate of transposition of the membrane carrier system for methotrexate, altering the kinetics of transport without a change in transport thermodynamics.  相似文献   

13.
Methotrexate, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide react to form an activated ester of methotrexate which is a potent irreversible inhibitor of methotrexate transport in L1210 cells. In cells treated with the reagent at 37 degrees C, inhibition was rapid (t1/2 less than 1 min), optimal at pH 6.8, half-maximal at an inhibitor concentration of 20 nM, and complete at high levels of the reagent. Specificity was indicated by the fact that excess methotrexate added during the pretreatment step protected the transport system against inactivation. Irreversible inhibition was also observed in cells exposed to the reagent at 4 degrees C. Inactivation in this case was qualitatively similar to the corresponding process at 37 degrees C; it appeared rapidly, was half-maximal at 20 nM, and could be prevented by the addition of high concentrations of the substrate. The extent of the inhibition, however, reached a maximum of only 75%, even in samples containing excess or multiple additions of reagent. The latter findings suggest that at 4 degrees C the transport protein exists in two forms, one (75% of the total) containing binding sites which are accessible to the active ester, and the other (25% of the total) with inaccessible sites. The identity of these sites is suggested to be transport proteins which have outward and inward orientations, respectively.  相似文献   

14.
We have studied by flow cytometry the transport of fluorescein-methotrexate in Chinese hamster ovary cells. Fluorescein-methotrexate appears to enter cells via a mechanism different from the carrier-mediated system for methotrexate. This conclusion is supported by the following observations: 1) Fluorescein-methotrexate is transported equally well into normal and mutant cells defective in the inward methotrexate uptake. 2) Folic acid and its reduced states, which competitively inhibit methotrexate uptake, do not alter fluorescein-methotrexate transport. 3) Fluorescein-methotrexate accumulation exhibits a low temperature coefficient (Q10 = 1.6) compared with the influx of methotrexate (Q10 = 6-8). 4) Initial rates of fluorescein-methotrexate uptake are concentration dependent but are not saturable. 5) Fluorescein-methotrexate uptake is very slow and reaches steady state after 8 h, whereas at an equimolar concentration methotrexate reaches saturation after 20 min. 6) Initial influx rates of fluorescein-methotrexate are not affected by the presence of methotrexate. 7) Sulfhydryl-reactive mercurials, which block methotrexate transport, do not reduce fluorescein-methotrexate influx, but rather stimulate it. Thus, based on the nonsaturability of fluorescein-methotrexate inward transport, its low temperature coefficient, and lack of inhibition with structural analogs, we conclude that fluorescein-methotrexate is accumulated in hamster cells by a passive diffusion process.  相似文献   

15.
N Kochhar  D Kaul 《FEBS letters》1992,299(1):19-22
Incubation of human platelets with cholesterol-poor, cholesterol-normal and cholesterol-rich liposomes revealed that: (i) acquisition or depletion of platelet membrane cholesterol was highly selective; (ii) variation in membrane cholesterol was highly selective. Variation in membrane cholesterol content (cholesterol-to-phospholipid molar ratio from 0.15-1.2) with respect to values found in unmodified normal platelets, was paralleled by the observed changes in amiloride-sensitive cytoplasmic pH, as well as phospholipase A2 activity. However, a decrease in cytoplasmic pH was accompanied by an increase in phospholipase A2 activity; (iii) membrane cholesterol-modulated changes in intra-platelet pH, as well as phospholipase A2 activity, was completely inhibited when platelets were pretreated with quinacrine (a specific phospholipase A2 inhibitor) before exposure to various types of liposomes. Although exposure of platelets (pretreated with amiloride) with various types of liposomes resulted in the inhibition of Na+/H+ exchange it had no noticeable effect upon the observed phospholipase A2 activity. Based upon these results we suggest that membrane cholesterol-modulated phospholipase A2 activity may be the basic mechanism responsible for the nature of Na+/H+ exchanger activity observed in cholesterol-enriched platelets, leading these platelets to a hypersensitized state.  相似文献   

16.
Interactions of immunoliposomes with target cells   总被引:7,自引:0,他引:7  
We have covalently attached a monoclonal antibody (11-4.1) against the murine major histocompatibility antigen, H-2Kk, on the surface of liposomes. The interaction of these antibody-coated liposomes (immunoliposomes) with target cells, RDM-4 lymphoma (H-2Kk), was investigated. About 90% of the immunoliposomes taken up by target cells at 4 degrees C could be removed by a mild protease treatment of the cells, whereas only 30% of the uptake at 37 degrees C was labile to the same treatment. Furthermore, the uptake of immunoliposomes at 37 degrees C was inhibitable by cytochalasin B or by a combination of 2-deoxyglucose and NaN3. These results suggest that immunoliposome binding to the target cell surface is the primary uptake event at 4 degrees C and that the surface-bound liposomes are rapidly internalized by the cells at 37 degrees C, probably via an endocytic pathway. Studies with fluorescence microscopy of target cells treated with immunoliposomes containing carboxyfluorescein also supported this conclusion. If endocytosis is the mechanism by which immunoliposomes gain entry into target cells, the efficacy of a cytotoxic drug encapsulated would depend on the resistance of the drug to lysosomal inactivation and its ability to escape from the lysosomal system. Consistent with this notion, we observed that methotrexate encapsulated in liposomes bearing 11-4.1 antibody specifically inhibited deoxy[6-3H]uridine incorporation into DNA in target RDM-4 cells but not in P3-X63-Ag8 myeloma cells (H-2Kd) at the same doses. The observed cytotoxic effect of encapsulated methotrexate could be reversed by the treatment of cells with a lysosomotropic amine, chloroquine, which has been shown to increase the intralysosomal pH of mammalian cells. On the other hand, cytosine-beta-D-arabinofuranoside encapsulated in immunoliposomes showed no target-specific killing, probably because the drug is readily inactivated in the lysosomal system. These results are discussed in terms of the drug carrier potential of immunoliposomes.  相似文献   

17.
The metabolism of phosphatidylcholine (PC) was investigated in sonicated suspensions of bovine pulmonary artery endothelial cells and in subcellular fractions using two PC substrates: 1-oleoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho[14C]choline. When these substrates were incubated with the whole cell sonicate at pH 7.5, all of the metabolized 3H label was recovered in [3H]oleic acid (95%) and [3H]diacylglycerol (5%). All of the 14C label was identified in [14C]lysoPC (92%) and [14C]phosphocholine (8%). These data indicated that PC was metabolized via phospholipase(s) A and phospholipase C. Substantial diacylglycerol lipase activity was identified in the cell sonicate. Production of similar proportions of diacylglycerol and phosphocholine and the low relative activity of phospholipase C compared to phospholipase A indicated that the phospholipase C-diacylglycerol lipase pathway contributed little to fatty acid release from the sn-2 position of PC. Neither phospholipase A nor phospholipase C required Ca2+. The pH profiles and subcellular fractionation experiments indicated the presence of multiple forms of phospholipase A, but phospholipase C activity displayed a single pH optimum at 7.5 and was located exclusively in the particulate fraction. The two enzyme activities demonstrated differential sensitivities to inhibition by p-bromophenacylbromide, phenylmethanesulfonyl fluoride and quinacrine. Each of these agents inhibited phospholipase A, whereas phospholipase C was inhibited only by p-bromophenacylbromide. The unique characteristics observed for phospholipase C activity towards PC indicated the existence of a novel enzyme that may play an important role in lipid metabolism in endothelial cells.  相似文献   

18.
Egg yolk phosphatidylcholine liposomes modified with a copolymer of N-acryloylpyrrolidine and N-isopropylacrylamide having a lower critical solution temperature at ca. 40 degrees C were prepared and an effect of temperature on their interaction with CV1 cells was investigated. The unmodified liposomes were taken up by the cells approximately to the same extent after 3 h incubation at 37 and 42 degrees C. In contrast, uptake of the polymer-modified liposomes by CV1 cells decreased slightly at 37 degrees C but increased greatly at 42 degrees C, compared to the unmodified liposomes. Proliferation of the cells was partly prohibited by the incubation with the unmodified liposomes encapsulating methotrexate at 37 and 42 degrees C. The treatment with the polymer-modified liposomes containing methotrexate at 37 degrees C hardly effected the cell growth. However, the treatment at 42 degrees C inhibited the cell growth completely. It is considered that the highly hydrated polymer chains attached to the liposome surface suppressed the liposome-cell interaction below the lower critical solution temperature of the polymer but the dehydrated polymer chains enhanced the interaction above this temperature. Because interaction of the polymer-modified liposomes with cells can be controlled by the ambient temperature, these liposomes may have potential usefulness as efficient site-specific drug delivery systems.  相似文献   

19.
Recent studies indicate that viruses may influence polyphosphoinositide levels. This study has examined the effects of vaccinia virus infection on phospholipase C activity. Infection of BS-C-1 cells, an African Green Monkey kidney cell line, or A431 cells, a human carcinoma cell line, with vaccinia virus inhibits receptor-mediated phospholipase C activation. As a consequence, agonist-mediated Ca2+ mobilization in BS-C-1 cells also was inhibited by vaccinia virus infection. Alleviation of the inhibition of phospholipase C activation was observed in vaccinia virus-infected cells treated with cycloheximide without influencing uninfected cells. Treatment of infected cells with alpha-amanitin, an inhibitor of host mRNA synthesis but not virus mRNA synthesis, failed to alleviate the inhibition of phospholipase C activation. Together these results suggest that a virus-encoded gene product mediates the inhibition of phospholipase C activation without the need of a virus-induced host factor. Analysis of the processes involved in the formation of inositol (1,4,5)-trisphosphate and mobilization of intracellular Ca2+ indicate that the vaccinia virus gene product exerts its inhibitory effects at the level of phospholipase C activity. This may occur by either directly reducing the amount of phospholipase C, reducing the specific activity of phospholipase C, or by inhibiting the association of phospholipase C with its substrate, phosphatidylinositol 4,5-bisphosphate.  相似文献   

20.
M Kubo  K Y Hostetler 《Biochemistry》1985,24(23):6515-6520
Cationic amphiphilic drugs like chlorpromazine, propranolol, and chloroquine inhibit lysosomal phospholipase A in vitro. Some workers have proposed that cationic amphiphilic drugs inhibit the activity of phospholipase A1 by forming substrate-drug complexes which cannot be degraded while others have reported competitive inhibition implying drug effects on the enzyme. To analyze the mechanism of inhibition, we examined the binding ability of these drugs to unilamellar vesicles of dioleoylphosphatidylcholine and correlated these results with a detailed kinetic analysis of phospholipase A. Chlorpromazine and propranolol bound to small unilamellar liposomes of dioleoylphosphatidylcholine substrate in a positive cooperative way consistent with two binding sites: a high-affinity site with low capacity and a low-affinity site with high capacity. The affinity of chlorpromazine for the high-affinity site was 2 times greater than that of propranolol (KA = 13 807 +/- 1722 vs. 8481 +/- 1078 M-1), and the saturation number for chlorpromazine was 3 times greater than for propranolol (N = 0.20 +/- 0.004 vs. 0.07 +/- 0.02 mol of drug/mol of phosphatidylcholine). Chloroquine did not bind to unilamellar liposomes of dioleoylphosphatidylcholine. We carried out detailed kinetic studies using purified lysosomal phospholipase A1 from rat liver. In the case of chloroquine inhibition, the Lineweaver-Burk double-reciprocal plots showed straight lines, but the slope replots were curved, indicating the formation of complexes having 2 mol of chloroquine/mol of enzyme (EI2 complexes). Thus, chloroquine is a competitive inhibitor which forms EI2 complexes with phospholipase A1. However, in the case of chlorpromazine and propranolol, the observed kinetic data do not fit to the same equilibrium used for the case of chloroquine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号