首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
O P Das  E Poliak  K Ward    J Messing 《Nucleic acids research》1991,19(12):3325-3330
The 27kD zein storage protein locus in many inbred lines of maize consists of a tandem duplication of 12kb, with an expressed gene in each repeat, termed A and B. A single-copy allele with only the A gene can be generated from this duplication in particular stocks of the maize inbred line A188 by a mitotic process that includes a crossover at the 3' regions of the two genes (1). Here, we characterize a second single-copy allele with only the B gene, found in different stocks of A188. This allele arises from a homologous recombination at the highly conserved 5' regions of the two repeats, and cloning and sequencing of this allele define the crossover region. The A and B genes in the duplicated allele were previously shown to be expressed at different levels; this difference remains unchanged in either recombinant allele. Therefore, the crossover points of these two recombinant alleles define the borders of cis-acting sequences responsible for the differential expression of the two genes.  相似文献   

2.
3.
W Hu  M C Timmermans  J Messing 《Genetics》1998,150(3):1229-1237
A new allele of the 27-kD zein locus in maize has been generated by interchromosomal recombination between chromosomes of two different inbred lines. A continuous patch of at least 11,817 bp of inbred W64A, containing the previously characterized Ra allele of the 27-kD zein gene, has been inserted into the genome of A188 by a single crossover. While both junction sequences are conserved, sequences of the two homologs between these junctions differ considerably. W64A contains the 7313-bp-long retrotransposon, Zeon-1. A188 contains a second copy of the 27-kD zein gene and a 2-kb repetitive element. Therefore, recombination results in a 7.3-kb insertion and a 14-kb deletion compared to the original S+A188 allele. If nonpairing sequences are looped out, 206 single base changes, frequently clustered, are present. The structure of this allele may explain how a recently discovered example of somatic recombination occurred in an A188/W64A hybrid. This would indicate that despite these sequence differences, pairing between these alleles could occur early during plant development. Therefore, such a somatically derived chimeric chromosome can also be heritable and give rise to new alleles.  相似文献   

4.
G L Murphy  W S Dallas 《Gene》1991,103(1):37-43
A clinical isolate of Escherichia coli harbored two copies of the heat-labile toxin (LT)-encoding gene (elt) on a 157-kb plasmid. The arrangement of the gene copies is different from the cholera toxin-encoding gene duplication described for some strains of Vibrio cholerae. The nucleotide sequences of the elt alleles are not identical (differing by 2 bp) and the duplicated region flanking the alleles extends 314 bp on one side and 1122 bp on the other side of each copy. Different partial copies of IS600 were identified 280 bp 3' to the stop codon of each allele. Partial and complete copies of other IS were also identified near the elt alleles. The data suggest that the regions surrounding the genes are hot spots for IS which would account for the observed heterogeneity in DNA flanking elt genes.  相似文献   

5.
A 268-kb chromosomal segment containing sorghum (Sorghum bicolor) genes that are orthologous to the maize (Zea mays) Rp1 disease resistance (R) gene complex was sequenced. A region of approximately 27 kb in sorghum was found to contain five Rp1 homologs, but most have structures indicating that they are not functional. In contrast, maize inbred B73 has 15 Rp1 homologs in two nearby clusters of 250 and 300 kb. As at maize Rp1, the cluster of R gene homologs is interrupted by the presence of several genes that appear to have no resistance role, but these genes were different from the ones found within the maize Rp1 complex. More than 200 kb of DNA downstream from the sorghum Rp1-orthologous R gene cluster was sequenced and found to contain many duplicated and/or truncated genes. None of the duplications currently exist as simple tandem events, suggesting that numerous rearrangements were required to generate the current genomic structure. Four truncated genes were observed, including one gene that appears to have both 5' and 3' deletions. The maize Rp1 region is also unusually enriched in truncated genes. Hence, the orthologous maize and sorghum regions share numerous structural features, but all involve events that occurred independently in each species. The data suggest that complex R gene clusters are unusually prone to frequent internal and adjacent chromosomal rearrangements of several types.  相似文献   

6.
7.
Rp1 is a complex disease resistance locus in maize that is exceptional in both allelic variability and meiotic instability. Genomic sequence analysis of three maize BACs from the Rp1 region of the B73 inbred line revealed 4 Rp1 homologs and 18 other gene-homologous sequences, of which at least 16 are truncated. Thirteen of the truncated genes are found in three clusters, suggesting that they arose from multiple illegitimate break repairs at the same sites or from complex repairs of each of these sites with multiple unlinked DNA templates. A 43-kb region that contains an Rp1 homolog, six truncated genes, and three Opie retrotransposons was found to be duplicated in this region. This duplication is relatively recent, occurring after the insertion of the three Opie elements. The breakpoints of the duplication are outside of any genes or identified repeat sequence, suggesting a duplication mechanism that did not involve unequal recombination. A physical map and partial sequencing of the Rp1 complex indicate the presence of 15 Rp1 homologs in regions of approximately 250 and 300 kb in the B73 inbred line. Comparison of fully sequenced Rp1-homologous sequences in the region demonstrates a history of unequal recombination and diversifying selection within the Leu-rich repeat 2 region, resulting in chimeric gene structures.  相似文献   

8.
9.
Trypanosoma brucei brucei (EATRO-164) contains a tandem array of six genes encoding a glucose transporter, THT1 (trypanosome hexose transporter), followed by five genes encoding a second isoform, THT2. Two distinct clusters containing THT1 and THT2 genes have been identified in the EATRO-164 clone and in most other African trypanosome clones analyzed. Analysis of progeny from crosses between clones of T. b. brucei displaying polymorphism in THT1 copy number per cluster suggests that the two clusters of THT genes are present on homologous chromosomes. In addition, analysis of 30 African trypanosome clones revealed a high degree of polymorphism in THT1 copy number per cluster. Sequence comparison of five THT1 and two and one-half THT2 unit repeats, present within a 20-kb region, provided information about the genesis and evolution of the THT multigene family. The most divergent regions between THT1 and THT2 unit repeats probably arose from insertion of DNA fragments into an ancestral THT region. Genes of each of the different families are almost identical, and there are large regions of identity shared between THT1 and THT2 members. A mosaic copy containing most of a THT1 gene with the 3' extremity of a THT2 gene is found within the cluster. These results suggest that THT1 and THT2 arose by modification (insertion, mutation, or conversion) of duplicated ancestral genes. Functional constraints and homologous recombination may be evoked to explain the maintenance of the conserved sequences of THT1 and THT2.   相似文献   

10.
Multiple disease resistance has important implications for plant fitness, given the selection pressure that many pathogens exert directly on natural plant populations and indirectly via crop improvement programs. Evidence of a locus conditioning resistance to multiple pathogens was found in bin 1.06 of the maize genome with the allele from inbred line “Tx303” conditioning quantitative resistance to northern leaf blight (NLB) and qualitative resistance to Stewart’s wilt. To dissect the genetic basis of resistance in this region and to refine candidate gene hypotheses, we mapped resistance to the two diseases. Both resistance phenotypes were localized to overlapping regions, with the Stewart’s wilt interval refined to a 95.9-kb segment containing three genes and the NLB interval to a 3.60-Mb segment containing 117 genes. Regions of the introgression showed little to no recombination, suggesting structural differences between the inbred lines Tx303 and “B73,” the parents of the fine-mapping population. We examined copy number variation across the region using next-generation sequencing data, and found large variation in read depth in Tx303 across the region relative to the reference genome of B73. In the fine-mapping region, association mapping for NLB implicated candidate genes, including a putative zinc finger and pan1. We tested mutant alleles and found that pan1 is a susceptibility gene for NLB and Stewart’s wilt. Our data strongly suggest that structural variation plays an important role in resistance conditioned by this region, and pan1, a gene conditioning susceptibility for NLB, may underlie the QTL.  相似文献   

11.
Massese is an Italian dairy sheep breed characterized by animals with black skin and horns and black or apparent grey hairs. Owing to the presence of these two coat colour types, this breed can be considered an interesting model to evaluate the effects of coat colour gene polymorphisms on this phenotypic trait. Two main loci have been already shown to affect coat colour in sheep: Agouti and Extension coding for the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes, respectively. The Agouti locus is affected by a large duplication including the ASIP gene that may determine the Agouti white and tan allele (A(Wt)). Other disrupting or partially inactivating mutations have been identified in exon 2 (a deletion of 5 bp, D(5); and a deletion of 9 bp, D(9)) and in exon 4 (g.5172T>A, p.C126S) of the ASIP gene. Three missense mutations in the sheep MC1R gene cause the dominant black E(D) allele (p.M73K and p.D121N) and the putative recessive e allele (p.R67C). Here, we analysed these ASIP and MC1R mutations in 161 Massese sheep collected from four flocks. The presence of one duplicated copy allele including the ASIP gene was associated with grey coat colour (P = 9.4E-30). Almost all animals with a duplicated copy allele (37 out of 41) showed uniform apparent grey hair and almost all animals without a duplicated allele (117 out of 120) were completely black. Different forms of duplicated alleles were identified in Massese sheep including, in almost all cases, copies with exon 2 disrupting or partially inactivating mutations making these alleles different from the A(Wt) allele. A few exceptions were observed in the association between ASIP polymorphisms and coat colour: three grey sheep did not carry any duplicated copy allele and four black animals carried a duplicated copy allele. Of the latter four sheep, two carried the E(D) allele of the MC1R gene that may be the cause of their black coat colour. The coat colour of all other black animals may be determined by non-functional ASIP alleles (non-agouti alleles, A(a)) and in a few cases by the E(D) Extension allele. At least three frequent ASIP haplotypes ([D(5):g.5172T], [N:g.5172A] and [D(5):g.5172A]) were detected (organized into six different diplotypes). In conclusion, the results indicated that coat colours in the Massese sheep breed are mainly derived by combining ASIP and MC1R mutations.  相似文献   

12.
Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC‐disassortative mate choice. However, many species lack this expected pattern of MHC‐disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus‐specific primers for high‐throughput sequencing of two expressed MHC Class II B genes in Leach's storm‐petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene‐specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC‐dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection.  相似文献   

13.
14.
15.
Only a few mutations affecting flowering time have been detected in maize. We analyzed a spontaneous early mutation, vgt-f7p, which appeared during production of the inbred line F7. This mutation shortens the time from planting to flowering by about 100 growing degree days (GDD), and reduces the number of nodes. It therefore seems to affect the timing of meristem differentiation from a vegetative to a reproductive state. It was mapped to a 6 cM confidence interval on chromosome 8, using a QTL mapping approach. QTL analysis of a mapping population generated by crossing the mutant F7 line (F7p) and the Gaspé flint population showed that vgt-f7p is probably allelic to vgt1, a QTL described in previous studies, and affects earliness more strongly than the Gaspé allele at vgt1. Global analysis of the QTL in the region suggested that there may be two consensus QTL, vgt1 and vgt2. These two QTL have contrasting allelic effects: rare alleles conferring extremely early flowering at vgt1 vs. greater diversity and milder effects at locus vgt2. Finally, detailed syntenic analysis showed that the vgt1 region displays a highly conserved duplicated region on chromosome 6, which also plays an important role in maize flowering time variation. The cloning of vgt1 should, therefore, also facilitate the analysis of the molecular basis of variation due to this second region.  相似文献   

16.
Evolution of DNA sequence nonhomologies among maize inbreds   总被引:24,自引:0,他引:24       下载免费PDF全文
Allelic chromosomal regions totaling more than 2.8 Mb and located on maize (Zea mays) chromosomes 1L, 2S, 7L, and 9S have been sequenced and compared over distances of 100 to 350 kb between the two maize inbred lines Mo17 and B73. The alleles contain extended regions of nonhomology. On average, more than 50% of the compared sequence is noncolinear, mainly because of the insertion of large numbers of long terminal repeat (LTR)-retrotransposons. Only 27 LTR-retroelements are shared between alleles, whereas 62 are allele specific. The insertion of LTR-retrotransposons into the maize genome is statistically more recent for nonshared than shared ones. Most surprisingly, more than one-third of the genes (27/72) are absent in one of the inbreds at the loci examined. Such nonshared genes usually appear to be truncated and form clusters in which they are oriented in the same direction. However, the nonshared genome segments are gene-poor, relative to regions shared by both inbreds, with up to 12-fold difference in gene density. By contrast, miniature inverted terminal repeats (MITEs) occur at a similar frequency in the shared and nonshared fractions. Many times, MITES are present in an identical position in both LTRs of a retroelement, indicating that their insertion occurred before the replication of the retroelement in question. Maize ESTs and/or maize massively parallel signature sequencing tags were identified for the majority of the nonshared genes or homologs of them. In contrast with shared genes, which are usually conserved in gene order and location relative to rice (Oryza sativa), nonshared genes violate the maize colinearity with rice. Based on this, insertion by a yet unknown mechanism, rather than deletion events, seems to be the origin of the nonshared genes. The intergenic space between conserved genes is enlarged up to sixfold in maize compared with rice. Frequently, retroelement insertions create a different sequence environment adjacent to conserved genes.  相似文献   

17.
Sequence characterization of the genomic region of sorghum yellow seed 1 shows the presence of two genes that are arranged in a head to tail orientation. The two duplicated gene copies, y1 and y2 are separated by a 9.084 kbp intergenic region, which is largely composed of highly repetitive sequences. The y1 is the functional copy, while the y2 may represent a pseudogene; there are several sequence indels and rearrangements within the putative coding region of y2. The y1 gene encodes a R2R3 type of Myb domain protein that regulates the expression of chalcone synthase, chalcone isomerase and dihydroflavonol reductase genes required for the biosynthesis of 3-deoxyflavonoids. Expression of y1 can be observed throughout the plant and it represents a combination of expression patterns produced by different alleles of the maize p1. Comparative sequence analysis within the coding regions and flanking sequences of y1, y2 and their maize and teosinte orthologs show local rearrangements and insertions that may have created modified regulatory regions. These micro-colinearity modifications possibly are responsible for differential patterns of expression in maize and sorghum floral and vegetative tissues. Phylogenetic analysis indicates that sorghum y1 and y2 sequences may have arisen by gene duplication mechanisms and represent an evolutionarily parallel event to the duplication of maize p2 and p1 genes.  相似文献   

18.
Sachs MM  Dennis ES  Gerlach WL  Peacock WJ 《Genetics》1986,113(2):449-467
Two standard electrophoretic alleles of the maize alcohol dehydrogenase 1 locus (Adh1-1S and Adh1-1F) have been isolated and characterized. Restriction endonuclease mapping shows that a region of less than 5 kb is conserved in both alleles and is flanked both 5' and 3' by regions highly polymorphic for restriction sites. Nucleotide sequence comparison of these two alleles reveals that polymorphism in the 3' flanking region is due to rearrangements including tandem duplications, a transposable element-like insertion and a deletion. S1 nuclease analysis shows that both the Adh1-1S and the Adh1-1F alleles contain multiple poly(A) addition sites; four sites are observed for the Adh1-1S alleles and seven sites for the Adh1-1F allele. Only two of these poly(A) addition sites appear to be identical in the two alleles. No consensus signal for poly(A) addition is observed near any of these sites.  相似文献   

19.
Mouse t haplotypes contain at least one inversion, which encompasses the major histocompatibility complex, relative to their wild-type counterparts. A DNA probe for a single copy sequence which flanks the H-2K region in inbred strains was found to have undergone further rearrangements in the t haplotypes. In most t haplotypes, this sequence is duplicated at a distant site, and the two regions show 1 % recombination. The length of homology shared by the two sites is likely to be at least 10–15 kb. Three different alleles, as defined by restriction fragment length polymorphisms, were found for each of the two sites among different t haplotypes. These may reveal evolutionary relationships among these chromosomes.  相似文献   

20.
Y Li  J Xiao  J Wu  J Duan  Y Liu  X Ye  X Zhang  X Guo  Y Gu  L Zhang  J Jia  X Kong 《The New phytologist》2012,196(1):282-291
? Rht-D1c (Rht10) carried by Chinese wheat (Triticum aestivum) line Aibian 1 is an allele at the Rht-D1 locus. Among the Rht-1 alleles, little is known about Rht-D1c although it determines an extreme dwarf phenotype in wheat. ? Here, we cloned and functionally characterized Rht-D1c using a combination of Southern blotting, target region sequencing, gene expression analysis and transgenic experiments. ? We found that the Rht-D1c allele was generated through a tandem segmental duplication (TSD) of a >?1?Mb region, resulting in two copies of the Rht-D1b. Two copies of Rht-D1b in the TSD were three-fold more effective in reducing plant height than a single copy, and transformation with a segment containing the tandemly duplicated copy of Rht-D1b resulted in the same level of reduction of plant height as the original copy in Aibian 1. ? Our results suggest that changes in gene copy number are one of the important sources of genetic diversity and some of these changes could be directly associated with important traits in crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号