首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citharexylum spinosum L. (Verbenaceae) also known as Citharexylum quadrangulare Jacq . or Citharexylum fruticosum L. is an exotic tree introduced many years ago in Tunisia, specially used as a street and park ornamental tree. Essential oils (EOs) were obtained by hydrodistillation of the different parts (roots, stems, leaves, flowers and fruits; drupes) collected from trees grown in the area of Monastir (Tunisia). In total, 84 compounds, representing 90.1 – 98.4% of the whole oil composition, were identified by GC‐FID and GC/MS analyses. The root EO was distinguished by its high content in monoterpene hydrocarbons (α‐phellandrene; 30.8%) whereas that obtained from stems was dominated by sesquiterpene hydrocarbons (cuparene; 16.4%). The leaf oil was rich in an apocarotenoid derivative (hexahydrofarnesylacetone; 26%) and an aliphatic hydrocarbon (nonadecane; 14.5%). Flowers oil was rich in esters (2‐phenylethyl benzoate; 33.5%). Finally, drupes oil was rich in oxygenated sesquiterpenes (β‐eudesmol; 33.1%). Flowers oil showed a significant phytotoxic effect against lettuce seeds germination, it induces a total inhibition when tested at 1 mg/ml. Root and shoot elongation seemed to be more affected than germination. The inhibition of the shoot length varied from 3.6% to 100% and that of the root from 16.1% to 100%. The highest inhibition of 100% was detected for flower oil tested at 1 mg/ml. Our in vitro studies suggest a possible and new alternative use of Cspinosum EOs in herbicidal formulations, further experiments involving field conditions are necessary to confirm its herbicidal potential.  相似文献   

2.
The aim of this study was to determine the chemical profile of the essential oils (EOs) of three Moroccan lavender species (Lavandula pedunculata, LP; Lavandula angustifolia, LA; and Lavandula maroccana, LM) and to investigate, for the first time, the synergistic effect of the optimal mixture of the EOs with conventional antibiotic ciprofloxacin against three pathogenic foodborne bacteria. Gas chromatography/mass spectrometry analysis showed that eucalyptol (39·05%), camphor (24·21%) and borneol (8·29%) were the dominant compounds of LA-EO. LP-EO was characterized by the abundance of camphor (74·51%) and fenchone (27·06%), whereas carvacrol (42·08%), camphor (17·95%) and fenchone (12·05%) were the main constituents of LM-EO. EOs alone or combined showed a remarkable antimicrobial activity against the tested bacteria with minimum inhibitory concentrations (MICs) ranging from 3·53 to 15·96 mg ml−1. The optimal mixture, calculated using a mixture design, corresponded to 19% LA, 38% LP and 43% LM. All combination of the EOs and the best EO mixture with ciprofloxacin exhibited a total synergism with fractional inhibitory concentration index values ranging from 0·27 to 0·37. The best EO mixture showed the highest gain of 128-fold, especially against Salmonella spp., more than that found testing the EOs separately. These findings should be taken into consideration for a possible application in the pharmaceutical and food industries.  相似文献   

3.

Aims

This study aimed to investigate the antifungal mechanism of carvacrol and eugenol to inhibit Rhizopus stolonifer and the control of postharvest soft rot decay in peaches.

Methods and Results

To investigate the antifungal mechanism, the effects of carvacrol and eugenol on the mycelium growth, leakages of cytoplasmic contents, mycelium morphology, cell membrane and membrane composition of R. stolonifer were studied. Carvacrol and eugenol both exhibited dose‐dependent antifungal activity against R. stolonifer, carvacrol at a concentration of 2 μl per plant and eugenol at a concentration of 4 μl per plant inhibited fungal growth completely. The two essential oils (EOs) increased cell membrane penetrability and caused the leakage of cytoplasm, nucleic acid and protein content. The observation using scanning electron microscopy and fluorescent microscopy showed modification of the hyphal morphology and breakage of the cell plasma membrane. Decreased ergosterol contents confirmed that the two EOs could destroy the membrane of R. stolonifer. For the in vivo test, the inhibition of soft rot disease and the induction of defence‐related enzymes were investigated. Carvacrol and eugenol significantly reduced the incidence and severity of soft rot decay in inoculated peaches. The best treatments for controlling soft rot decay were obtained at 0·5 μl l?1 for carvacrol and 1 μl l?1 for eugenol. The activities of defence‐related enzymes in peaches were also enhanced by fumigation with two EOs.

Conclusion

This study showed that carvacrol and eugenol could effectively inhibit the growth of R. stolonifer in vitro and successfully control the incidence of soft rot decay in honey peaches.

Significance and Impact of the Study

The above findings may be the main antifungal mechanism of carvacrol and eugenol on R. stolonifer. Furthermore, carvacrol and eugenol are helpful for their commercial application on the preservation of fresh fruit.  相似文献   

4.
Essential oils (EOs) from Schinus molle, Helichrysum gymnocephalum, Cedrelopsis grevei and Melaleuca viridiflora, four aromatic and medicinal plants, are commonly used in folk medicine. EOs were characterized by gas chromatography/mass spectrometry (GC/MS) and quantified by gas chromatography‐flame ionization detection (GC‐FID); then evaluated for their behavioral effects on adults of the green pea aphid Acyrthosiphon pisum (Harris ) using a Perspex four‐armed olfactometer in order to test the compatibility of their use as phytoinsecticides to control this insect pest. Our results showed that the EOs from the leaves of Smolle, Mviridiflora and Cgrevei did not change aphids’ behavior. However, Smolle fruits EO seemed to be attractive while Hgymnocephalum leaves EO exhibited repellency towards aphids at a dose of 10 μl. The major compounds in Smolle fruits EO were 6‐epi‐shyobunol (16.22%) and d ‐limonene (15.35%). While, in Hgymnocephalum leaves EO, 1,8‐cineole was the main compound (47.4%). The difference in aphids’ responses to these two EOs could be attributed to the differences in their compositions. Our findings suggest that these two EOs have potential applications for the integrated pest management of Apisum (Harris ).  相似文献   

5.
To screen natural drugs with strong inhibitory effects against pathogenic fungi related to P. notoginseng, the antifungal activities of garlic and fennel EOs were studied by targeting P. notoginseng disease-associated fungi, and the possible action mechanisms of garlic and fennel EOs as plant fungicides were preliminarily discussed. At present, the antifungal mechanism of EOs has not been fully established. Therefore, understanding the antifungal mechanism of plant EOs is helpful to address P. notoginseng diseases continuous cropping disease-related obstacles and other agricultural cultivation problems. First, the Oxford cup method and chessboard were used to confirm that the EOs and oxamyl had a significant inhibitory effect on the growth of Fusarium oxysporum. F. oxysporum is the main pathogen causing root rot of P. notoginseng and the preliminary study on the antifungal mechanisms of the EOs against F. oxysporum showed that the inhibition of EOs mainly affects cell membrane permeability and cell processes and affects the enzyme activities of micro-organism, to achieve antifungal effects. Finally, an in vivo model verified that both two EOs could significantly inhibit the occurrence of root rot caused by F. oxysporum.  相似文献   

6.
Various diseases and toxic factors easily impair cellular and organic functions in mammals. Organ transplantation is used to rescue organ function, but is limited by scarce resources. Mesenchymal stem cell (MSC)‐based therapy carries promising potential in regenerative medicine because of the self‐renewal and multilineage potency of MSCs; however, MSCs may lose biological functions after isolation and cultivation for a long time in vitro. Moreover, after they are injected in vivo and migrate into the damaged tissues or organs, they encounter a harsh environment coupled with death signals due to the inadequate tensegrity structure between the cells and matrix. Preconditioning, genetic modification and optimization of MSC culture conditions are key strategies to improve MSC functions in vitro and in vivo, and all of these procedures will contribute to improving MSC transplantation efficacy in tissue engineering and regenerative medicine. Preconditioning with various physical, chemical and biological factors is possible to preserve the stemness of MSCs for further application in studies and clinical tests. In this review, we mainly focus on preconditioning and the corresponding mechanisms for improving MSC activities in vitro and in vivo; we provide a glimpse into the promotion of MSC‐based cell therapy development for regenerative medicine. As a promising consequence, MSC transplantation can be applied for the treatment of some terminal diseases and can prolong the survival time of patients in the near future.  相似文献   

7.
The ethanolic and aqueous extracts from in vitro shoots of Quillaja saponaria Mol. (Quillay) were studied for their antifungal activity against the phytopathogenic fungus Botrytis cinerea Pers. These extracts reduced conidial germination and mycelial growth of B. cinerea, ethanolic extracts being more active than aqueous extracts. In addition, the damage areas produced by this fungus on tomato leaves and strawberry fruits pre-treated with quillay extracts were diminished. The fungitoxic effect of in vitro-grown quillay extract was similar to those obtained with commercial fungicides of both natural (BC-1000) and synthetic (iprodione–dicarboximide) origin. On the other hand, the antifungal action of quillay extracts obtained from adult trees naturally grown was only slightly superior to the fungitoxic activity of the extract from in vitro plants. HPLC analysis of the extract showed that it contained saponins and some phenolic compounds such as chlorogenic, caffeic, vanillic, and salicylic acids, and scopoletin, which have been identified as antifungal agents on phytopathogenic fungi. The results obtained in this work, suggests that extracts of in vitro-grown quillay have an important protective effect against B. cinerea and support the use of an in vitro culture system as a biotechnological alternative to obtain environmental safe antifungal quillay extracts to control B. cinerea, contributing to the preservation of this indigenous Chilean species.  相似文献   

8.
Since the observation of the great pleomorphism of fish trypanosomes, in vitro culture has become an important tool to support taxonomic studies investigating the biology of cultured parasites, such as their structure, growth dynamics, and cellular cycle. Relative to their biology, ex vivo and in vitro studies have shown that these parasites, during the multiplication process, duplicate and segregate the kinetoplast before nucleus replication and division. However, the inverse sequence (the nucleus divides before the kinetoplast) has only been documented for a species of marine fish trypanosomes on a single occasion. Now, this previously rare event was observed in Trypanosoma abeli, a freshwater fish trypanosome. Specifically, from 376 cultured parasites in the multiplication process, we determined the sequence of organelle division for 111 forms; 39% exhibited nucleus duplication prior to kinetoplast replication. Thus, our results suggest that nucleus division before the kinetoplast may not represent an accidental or erroneous event occurring in the main pathway of parasite reproduction, but instead could be a species‐specific process of cell biology in trypanosomes, such as previously noticed for Leishmania. This “alternative” pathway for organelle replication is a new field to be explored concerning the biology of marine and freshwater fish trypanosomes.  相似文献   

9.
Natural additives are in demand for the control of microbial growth in foods. Several natural compounds including essential oils (EOs) are being explored for food uses. In the present investigation, the antifungal activity of cinnamaldehyde, eugenol, peppermint and clove EOs and their combinations was evaluated against 12 species of Aspergillus, Fusarium, Penicillium and Rhizopus in in vitro and tomato fruit system (in-vivo). The EOs were able to inhibit complete growth of tested fungi at or below 0.6% level and 80?μL of EOs (except peppermint oil) in in vitro condition and tomato system, respectively. The fractional inhibitory studies showed either additive or indifferent effect by combining eugenol and peppermint, and indifferent or antagonist effect by combining the cinnamaldehyde and clove in both in vitro and in vivo studies. The findings may be useful for application of these EOs in foods, but their effects on organoleptic quality of foods need to be investigated.  相似文献   

10.
Alpinia species, used as ornamental plants and flavoring agents, are renowned for their therapeutic properties and their subsequent use in traditional medicines throughout the world. Alpinia zerumbet (Pers .) B.L.Burtt & R.M.Sm . is the most common Alpinia species encountered in Martinique. Several essential oils (EOs) obtained by hydrodistillation of Azerumbet flowers collected in various locations on the island at different seasons were analysed to evaluate the influence of the collection period and area on the EOs’ chemical compositions and to assess their bioactivity. A combination of GC‐FID and GC/MS techniques was used to examine the volatile constituents, leading to the identification of a total of 71 components accounting for 97.8 – 99.3% of the respective total GC‐FID areas: among them, nineteen compounds were characterized for the first time in Azerumbet EOs. The antimicrobial activity of these EOs was assessed against eight bacterial, yeast and fungal strains and two multi‐resistant strains: some significant bacteriostatic and fungistatic activities of Azerumbet flower oils were evidenced. Finally, an interesting insecticidal activity of the flower EO was highlighted for the first time against Aedes aegypti.  相似文献   

11.
The essential oils (EOs) of green seeds from Daucus carota subsp. maximus growing wild in Pantelleria Island (Sicily, Italy) were characterized. EOs were extracted by steam distillation, examined for their inhibitory properties against food‐borne Gram‐positive and Gram‐negative bacteria and analyzed for the chemical composition by gas chromatography (GC) and mass spectrometry (MS). Undiluted EOs showed a large inhibition spectrum against Gram‐positive strains and also vs. Acinetobacter spp. and Stenotrophomonas maltophilia. The minimum inhibition concentration (MIC) was in the range 1.25 – 2.50 μl/ml for the most sensitive strains. The chemical analysis indicated that Dcarota subsp. maximus EOs included 34 compounds (five monoterpene hydrocarbons, six oxygenated monoterpenes, 14 sesquiterpene hydrocarbons, four oxygenated sesquiterpenes, camphorene and four other compounds), accounting for 95.48% of the total oil, and that the major chemicals were carotol, β‐bisabolene, and isoelemicin.  相似文献   

12.
We previously reported l ‐α‐aminooxy‐phenylpropionic acid (AOPP) to be an inhibitor of auxin biosynthesis, but its precise molecular target was not identified. In this study we found that AOPP targets TRYPTOPHAN AMINOTRANSFERASE of ARABIDOPSIS 1 (TAA1). We then synthesized 14 novel compounds derived from AOPP to study the structure–activity relationships of TAA1 inhibitors in vitro. The aminooxy and carboxy groups of the compounds were essential for inhibition of TAA1 in vitro. Docking simulation analysis revealed that the inhibitory activity of the compounds was correlated with their binding energy with TAA1. These active compounds reduced the endogenous indole‐3‐acetic acid (IAA) content upon application to Arabidopsis seedlings. Among the compounds, we selected 2‐(aminooxy)‐3‐(naphthalen‐2‐yl)propanoic acid (KOK1169/AONP) and analyzed its activities in vitro and in vivo. Arabidopsis seedlings treated with KOK1169 showed typical auxin‐deficient phenotypes, which were reversed by exogenous IAA. In vitro and in vivo experiments indicated that KOK1169 is more specific for TAA1 than other enzymes, such as phenylalanine ammonia‐lyase. We further tested 41 novel compounds with aminooxy and carboxy groups to which we added protection groups to increase their calculated hydrophobicity. Most of these compounds decreased the endogenous auxin level to a greater degree than the original compounds, and resulted in a maximum reduction of about 90% in the endogenous IAA level in Arabidopsis seedlings. We conclude that the newly developed compounds constitute a class of inhibitors of TAA1. We designated them ‘pyruvamine’.  相似文献   

13.
Aerial parts of Artemisia arborescens were collected from different sites of the Mediterranean area (southwestern Algeria and southern Italy) and the chemical composition of their essential oil (EO) extracted by hydrodistillation was studied by both gas chromatography (GC) equipped with an enantioselective capillary column and GC/mass spectrometry (GC/MS). The EOs obtained were tested against several Listeria monocytogenes strains. Using GC and GC/MS, 41 compounds were identified, accounting for 96.0 – 98.8% of the total EO. All EOs showed a similar terpene profile, which was rich in chamazulene, β‐thujone, and camphor. However, the concentration of such compounds varied among the EOs. Aarborescens EO inhibited up to 83.3% of the Lmonocytogenes strains, but the inhibitory spectrum varied among the EOs, with those from Algeria showing a higher inhibition degree than the Italian EOs. Such effect likely depended on the ketone (β‐thujone + camphor) content of the EO. The differences in the EO composition support the hypothesis that Aarborescens has at least two different chemotypes: a β‐thujone and a chamazulene type. The EO inhibitory spectrum indicates the Aarborescens EO as a valuable option in the control of the food‐borne pathogens.  相似文献   

14.
《Journal of Asia》2022,25(2):101881
The diamondback moth (DBM), Plutella xylostella (L.), is a globally destructive pest of cruciferous vegetables. Excessive use of synthetic pesticides to control this species results in negative effects on the environment, human health, and nontargeted organisms. The essential oils (EOs) derived from plants may be developed as effective alternatives to conventional pesticides. In this study, thirteen EOs were extracted by hydrodistillation, respectively. Their chemical compositions were identified by gas chromatography-mass spectrometry (GC–MS). Furthermore, the biological activities of EOs such as toxicity, antifeedant activity, and growth inhibition effect, toward DBM larvae were investigated. Against DBM second-instar larvae, the most toxic EO was Pelargonium graveolens (LC50 = 0.36 μg/μl) after 72 hr of exposure, followed by Polygonum hydropiper (LC50 = 0.53 μg/μl). The Ocimum basilicum EO exhibited the highest antifeedant effect to third-instar larvae at at all set concentrations. At 15 μg/μl, the EOs of Acorus calamus, O. basilicum, and P. graveolens completely inhibited the feeding activities of larvae (100%). The Ruta graveolens EO showed the lowest relative growth rate and the highest growth inhibition rate towards third-instar larvae at diverse concentrations. And the EOs of P. hydropiper, A. calamus, and O. basilicum showed promising growth inhibition activities. Overall, the five EOs (P. graveolens, O. basilicum, R. graveolens, P. hydropiper, and A. calamus) showed moderate to high bioactivity, whereas eight EOs were found to be less active against DBM larvae. These results indicate that the five tested EOs are promising to be developed as novel botanical insecticides to control DBM population.  相似文献   

15.
The head lice, Pediculus humanus capitis (Phthiraptera:Pediculidae), is an obligate ectoparasite of humans that causes pediculosis capitis, a nuisance for millions of people worldwide, with high prevalence in children. Pediculosis capitis has been treated by methods that include the physical remotion of lice, various domestic treatments and conventional insecticides. None of these methods render complete protection, and there is clear evidence for the evolution of resistance and cross-resistance to conventional insecticides. Non-toxic alternative options are hence needed for head lice treatment and/or prevention, and natural products from plants, especially essential oils (EOs), are good candidates for safer control agents that may provide good anti-lice activity and low levels of evolved resistance. A few EOs have been tested as repellents with promissory results, although often in vitro tests and clinical trials produce contradictory results. A handful of fixed extracts and several EOs and their individual components have also been tested as contact pediculicides or fumigants. The studies have focused mainly on plant families characterized for the production of EOs. While many EOs and individual compounds showed pediculicide activity, comparing results is difficult due to the diverse bioassay methodologies. Studies of anti-lice activity of individual EO components provide the basis for preliminary conclusions of structure–activity relationships, although no clear patterns can yet be drawn. We here attempt to provide a concise compilation of the available information on anti-lice activity of plant extracts and plant-derived compounds, which we hope may be of help for future developments in this area.
  相似文献   

16.
Embryonic stem (ES) cells provide an invaluable tool for molecular analysis of vertebrate development and a bridge linking genomic manipulations in vitro and functional analysis of target genes in vivo. Work towards fish ES cells so far has focused on zebrafish (Danio renio) and medaka (Oryzias latipes). Here we describe the derivation, pluripotency, differentiation and growth responses of ES cell lines from Nile tilapia (Oreochromis niloticus), a world‐wide commercial farmed fish. These cell lines, designated as TES1‐3, were initiated from blastomeres of Nile tilapia middle blastula embryos (MBE). One representative line, TES1, showed stable growth and phenotypic characteristics of ES cells over 200 days of culture with more than 59 passages under feeder‐free conditions. They exhibited high alkaline phosphatase activity and expression of pluripotency genes including pou5f3 (the pou5f1/oct4 homologue), sox2, myc and klf4. In suspension culture together with retinoic acid treatment, TES1 cells formed embryoid bodies, which exhibited expression profile of differentiation genes characteristics of all three germ cell layers. Notably, PKH26‐labeled TES1 cells introduced into Nile tilapia MBE could contribute to body compartment development and led to hatched chimera formation with an efficacy of 13%. These results suggest that TES1 cells have pluripotency and differentiation potential in vitro and in vivo. In the conditioned DMEM, all of the supplements including the fetal bovine serum, fish embryonic extract, fish serum, basic fibroblast growth factor and non‐protein supplement combination 5N were mitogenic for TES1 cell growth. This study will promote ES‐based biotechnology in commercial fish.  相似文献   

17.
Artemisia fragrans is commonly used as a folk medicine as antispasmodic, anti-pyretic, anti-inflammatory, and abortifacient agents. The villagers use its pungent odor to repel rodents, mites, and pests, as well as its essential oil and smoke after burning to treat lung infections after uprooting the plant. Herein, we extracted the essential oils (EOs) of different parts of the plant and analyzed their chemical compositions and antibacterial activities. The chemical analysis led to the identification of 73, 59, and 57 compounds in the EOs of the stem, leaf, and flower, respectively. All of the EOs exhibited antibacterial activities against both G+ and G− bacteria. The EOs of the leaf and flower were more effective against tested bacteria, except B. anthracis and P. aeruginosa, compared to that of the stem. The binary combination of the EOs (stem and flower) or (stem and leaf) showed a synergistic effect. Statistical analysis indicated EOs of leaf and flower are more potent than that of the stem. These findings suggest the application of leaf and flower of the plant, which not only can prevent its uprooting but also ensure better therapeutic function.  相似文献   

18.
Essential oils (EOs) from Eucalyptus globulus Labill . ssp. globulus and from Mediterranean autochthonous aromatic plants – Thymus mastichina L., Mentha pulegium L., Rosmarinus officinalis L., Calamintha nepeta (L.) Savi ssp. nepeta, Cistus ladanifer L., Foeniculum vulgare L., Dittrichia viscosa (L.) Greuter ssp. viscosa – were extracted by hydrodistillation and characterized by GC‐FID and NMR spectroscopy. EOs were evaluated for antimicrobial properties against several bacterial strains, using diverse methods, namely, the agar disc‐diffusion method, the microdilution method, the crystal violet assay and the Live/Dead staining for assessment of biofilm formation. Potential synergy was assessed by a checkerboard method. EOs of R. officinalis and C. ladanifer showed a predominance in monoterpene hydrocarbons (> 60%); EOs of C. nepeta, M. pulegium, T. mastichina, E. globulus and F. vulgare were rich in oxygenated monoterpenes (62 – 96%) whereas EO of D. viscosa was mainly composed of oxygenated sesquiterpenes (54%). All EOs showed antimicrobial activity; M. pulegium and E. globulus generally had the strongest antimicrobial activity. EO of C. nepeta was the most promising in hampering the biofilm formation. The combinations D. viscosa/C. nepeta and E. globulus/T. mastichina were synergistic against Staphylococcus aureus. These results support the notion that EOs from the aromatic plants herein reported should be further explored as potential pharmaceuticals and/or food preservatives.  相似文献   

19.
The indiscriminate use of synthetic fungicides has caused several problems to the environment, which place human and animal health at risk. Due to this fact, the search for natural alternatives to control phytopathogenic fungi growth has increased. This study aims to evaluate the antifungal activity of two essential oils (EOs) and three major components of EOs on the radial growth and spore germination of Fusarium verticillioides and Alternaria tenuissima. Minimum and half‐maximal inhibitory concentrations (CMI and CI50) at 96 h for each treatment were calculated. Lemongrass EO and citral caused the highest inhibition for A. tenuissima (CMI of 1000 μl/l and CI50 of 10 μl/l). For F. verticillioides, the most effective component was geraniol (CMI and CI50 of 1000 and 250 μl/l, respectively). Spore germination rate was delayed by the EOs and major components tested. The use of EOs was effective to control these two fungal species in their different grow stages.  相似文献   

20.
Neuronal dendrites acquire complex morphologies during development. These are not just the product of cell-intrinsic developmental programs; rather they are defined in close interaction with the cellular environment. Thus, to understand the molecular cascades that yield appropriate morphologies, it is essential to investigate them in vivo, in the actual complex tissue environment encountered by the differentiating neuron in the developing animal. Particularly, genetic approaches have pointed to factors controlling dendrite differentiation in vivo. These suggest that localized and transient molecular cascades might underlie the formation and stabilization of dendrite branches with neuron type–specific characteristics. Here, I highlight the need for studies of neuronal dendrite differentiation in the animal, the challenges provided by such an approach, and the promising pathways that have recently opened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号