首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Self‐assembly of PAs composed of palmitic acid and several repeated heptad peptide sequences, C15H31CO‐(IEEYTKK)n‐NH2 (n = 1–4, represented by PA1–PA4), was investigated systematically. The secondary structures of the PAs were characterized by CD. PA3 and PA4 (n = 3 and 4, respectively) showed an α‐helical structure, whereas PA1 and PA2 (n = 1 and 2, respectively) did not display an α‐helical conformations under the tested conditions. The morphology of the self‐assembled peptides in aqueous medium was studied by transmission electron microscopy. As the number of heptad repeats in the PAs increased, the nanostructure of the self‐assembled peptides changed from nanofibers to nanovesicles. Changes of the secondary structures and the self‐assembly morphologies of PA3 and PA4 in aqueous medium with various cations were also studied. The critical micelle concentrations were determined using a pyrene fluorescence probe. In conclusion, this method may be used to design new peptide nanomaterials. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.

Background  

Fast-growing Eucalyptus grandis trees are one of the most efficient producers of wood in South Africa. The most serious problem affecting the quality and yield of solid wood products is the occurrence of end splitting in logs. Selection of E. grandis planting stock that exhibit preferred wood qualities is thus a priority of the South African forestry industry. We used microarray-based DNA-amplified fragment length polymorphism (AFLP) analysis in combination with expression profiling to develop fingerprints and profile gene expression of wood-forming tissue of seven different E. grandis trees.  相似文献   

3.

Aims

This study aimed to examine heat curing effect (30–100°C) on antifungal activities of lime oil and its components (limonene, p‐cymene, β‐pinene and α‐pinene) at concentrations ranging from 100 to 300 μl ml?1 against Aspergillus niger in microbiological medium and to optimize heat curing of lime oil for efficient mould control on sedge (Lepironia articulata).

Methods and Results

Broth dilution method was employed to determine lime oil minimum inhibitory concentration, which was at 90 μl ml?1 with heat curing at 70°C. Limonene, a main component of lime oil, was an agent responsible for temperature dependencies of lime oil activities observed. Response surface methodology was used to construct the mathematical model describing a time period of zero mould growth on sedge as functions of heat curing temperature and lime oil concentration. Heat curing of 90 μl ml?1 lime oil at 70°C extended a period of zero mould growth on sedge to 18 weeks under moist conditions.

Conclusions

Heat curing at 70°C best enhanced antifungal activity of lime oil against A. niger both in medium and on sedge.

Significance and Impact of the Study

Heat curing of lime oil has potential to be used to enhance the antifungal safety of sedge products.  相似文献   

4.

Aims

A novel chimeric‐truncated form of tissue‐type plasminogen activator (t‐PA) with improved fibrin affinity and resistance to PAI was successfully produced in CHO expression system during our previous studies. Considering advantages of prokaryotic expression systems, the aim in this study was to produce the novel protein in Escherichia coli (BL21) strain and compare the protein potency in batch and fed‐batch processes.

Methods and Results

The expression cassette for the novel t‐PA was prepared in pET‐28a(+). The E. coli expression procedure was compared in traditional batch and newly developed fed batch, EnBase® Flo system. The protein was purified in soluble format, and potency results were identified using Chromolize t‐PA Assay Kit. The fed‐batch fermentation mode, coupled with a Ni‐NTA affinity purification procedure under native condition, resulted in higher amounts of soluble protein, and about a 30% of improvement in the specific activity of the resulted recombinant protein (46·66 IU mg?1) compared to traditional batch mode (35·8 IU mg?1).

Conclusions

Considering the undeniable advantages of expression in the prokaryotic expression systems such as E. coli for recombinant protein production, applying alternative methods of cultivation is a promising approach. In this study, fed‐batch cultivation methods showed the potential to replace miss‐folded formats of protein with proper folded, soluble form with improved potency.

Significance and Impact of the Study

Escherichia coli expression of recombinant proteins still counts for nearly 40% of marketed biopharmaceuticals. The major drawback of this system is the lack of appropriate post‐translational modifications, which may cause potency loss/decline. Therefore, applying alternative methods of cultivation as investigated here is a promising approach to overcome potency decrease problem in this protein production system.  相似文献   

5.

Aims

The aim of this study is to evaluate the capacity of three bacteriocin producers, namely Lactococcus lactis subsp. lactis biovar diacetylactis UL719 (nisin Z producer), L. lactis ATCC 11454 (nisin A producer) and Pediococcus acidilactici UL5 (pediocin PA‐1 producer), and to grow and produce their active bacteriocins in Macfarlane broth, which mimics the nutrient composition encountered in the human large intestine.

Methods and Results

The three bacteriocin‐producing strains were grown in Macfarlane broth and in De Man–Rogosa–Sharpe (MRS) broth. For each strain, the bacterial count, pH drop and production of organic acids and bacteriocins were measured for different period of time. The ability of the probiotic candidates to inhibit Listeria ivanovii HPB 28 in co‐culture in Macfarlane broth was also examined. Lactococcus lactis subsp. lactis biovar diacetylactis UL719, L. lactis ATCC 11454 and Ped. acidilactici UL5 were able to grow and produce their bacteriocins in MRS broth and in Macfarlane broth. Each of the three candidates inhibited L. ivanovii HPB 28, and this inhibition activity was correlated with bacteriocin production. The role of bacteriocin production in the inhibition of L. ivanovii in Macfarlane broth was confirmed for Ped. acidilactici UL5 using a pediocin nonproducer mutant.

Conclusions

The data provide some evidence that these bacteria can produce bacteriocins in a complex medium with carbon source similar to those found in the colon.

Significance and Impact of the Study

This study demonstrates the capacity of lactic acid bacteria to produce their bacteriocins in a medium simulating the nutrient composition of the large intestine.  相似文献   

6.

Aim

Species require sufficiently large and connected areas of suitable habitat to support populations that can persist through change. With extensive alteration of unprotected natural habitat, there is increasing risk that protected areas (PAs) will be too small and isolated to support viable populations in the long term. Consequently, this study addresses the urgent need to assess the capacity of PA estates to facilitate species persistence.

Location

Australia.

Methods

We undertake the first assessment of the capacity of the Australian National Reserve System (NRS) to protect 90 mammal species in the long term, given the size and distribution of individual PAs across the landscape relative to species’ habitat and minimum viable area (MVA) requirements and dispersal capabilities.

Results

While all mammal ranges are represented within the NRS, the conservation capacity declined notably when we refined measures of representation within PAs to include species’ habitat and area requirements. The NRS could not support any viable populations for between three and seven species, depending on the MVA threshold used, and could support less than 10 viable populations for up to a third of the species. Planning and managing PAs for persistence emerged as most important for species with large MVA requirements and limited dispersal capabilities.

Main conclusions

The key species characteristics we identify can help managers recognize species at risk within the current PA estate and guide the types of strategies that would best reduce this risk. We reveal that current representation‐based assessments of PA progress are likely to overestimate the long‐term success of PA estates, obscuring vulnerabilities for many species. It is important that conservation planners and managers are realistic and explicit regarding the role played by different sizes and distributions of PAs, and careful in assuming that the representation of a species within a PA equates to its long‐term conservation.
  相似文献   

7.

Aims

This study aimed to investigate the antifungal mechanism of carvacrol and eugenol to inhibit Rhizopus stolonifer and the control of postharvest soft rot decay in peaches.

Methods and Results

To investigate the antifungal mechanism, the effects of carvacrol and eugenol on the mycelium growth, leakages of cytoplasmic contents, mycelium morphology, cell membrane and membrane composition of R. stolonifer were studied. Carvacrol and eugenol both exhibited dose‐dependent antifungal activity against R. stolonifer, carvacrol at a concentration of 2 μl per plant and eugenol at a concentration of 4 μl per plant inhibited fungal growth completely. The two essential oils (EOs) increased cell membrane penetrability and caused the leakage of cytoplasm, nucleic acid and protein content. The observation using scanning electron microscopy and fluorescent microscopy showed modification of the hyphal morphology and breakage of the cell plasma membrane. Decreased ergosterol contents confirmed that the two EOs could destroy the membrane of R. stolonifer. For the in vivo test, the inhibition of soft rot disease and the induction of defence‐related enzymes were investigated. Carvacrol and eugenol significantly reduced the incidence and severity of soft rot decay in inoculated peaches. The best treatments for controlling soft rot decay were obtained at 0·5 μl l?1 for carvacrol and 1 μl l?1 for eugenol. The activities of defence‐related enzymes in peaches were also enhanced by fumigation with two EOs.

Conclusion

This study showed that carvacrol and eugenol could effectively inhibit the growth of R. stolonifer in vitro and successfully control the incidence of soft rot decay in honey peaches.

Significance and Impact of the Study

The above findings may be the main antifungal mechanism of carvacrol and eugenol on R. stolonifer. Furthermore, carvacrol and eugenol are helpful for their commercial application on the preservation of fresh fruit.  相似文献   

8.
Chifiriuc MC  Cioaca AB  Lazar V 《Anaerobe》2011,17(6):433-435
Kephir is a fermented carbonated refreshing milk, with a slightly acidic aromatic taste and creamy foam composition which contains lactobacilli, leuconostocci, acetic acid bacteria, lactostreptococci and yeasts. Recent studies have demonstrated its antibacterial, immunostimulating, antitumoral and cholesterol-lowering activities.

Purpose

The purpose of this study was to investigate the antimicrobial activity of kephir against Bacillus subtilis spp. spizizenii ATCC 6633, Staphylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 8739, Salmonella enteritidis ATCC 13076, Pseudomonas aeruginosa ATCC 9027 and Candida albicans ATCC 10231. The kephir fermented for 24 h and 48 h, as well and after 7 days preservation at 4–8 °C was tested by in vitro disk diffusion method. The intensity of the antimicrobial activity was interpreted by comparison with two antibiotics, i.e. ampicillin and neomycin.

Results

The antimicrobial activity of 24 h as well as 48 fermented kephir, fresh or after 7 days preservation at 4–8 °C was similar and observed against B. subtilis, S. aureus, E. coli, E. faecalis and S. enteritidis. For E. coli, E. faecalis and S. enteritidis the antimicrobial activity was superior to both tested antibiotics and for B. subtilis and S. aureus to one antibiotic. The tested products exhibited no activity against P. aeruginosa and C. albicans.

Conclusion

Kephir is exhibiting large spectrum and strong antibacterial activity probably due to the complex viable probiotic strains association producing antimicrobial substances.  相似文献   

9.
High and Far: Biases in the Location of Protected Areas   总被引:1,自引:0,他引:1  

Background

About an eighth of the earth''s land surface is in protected areas (hereafter “PAs”), most created during the 20th century. Natural landscapes are critical for species persistence and PAs can play a major role in conservation and in climate policy. Such contributions may be harder than expected to implement if new PAs are constrained to the same kinds of locations that PAs currently occupy.

Methodology/Principal Findings

Quantitatively extending the perception that PAs occupy “rock and ice”, we show that across 147 nations PA networks are biased towards places that are unlikely to face land conversion pressures even in the absence of protection. We test each country''s PA network for bias in elevation, slope, distances to roads and cities, and suitability for agriculture. Further, within each country''s set of PAs, we also ask if the level of protection is biased in these ways. We find that the significant majority of national PA networks are biased to higher elevations, steeper slopes and greater distances to roads and cities. Also, within a country, PAs with higher protection status are more biased than are the PAs with lower protection statuses.

Conclusions/Significance

In sum, PAs are biased towards where they can least prevent land conversion (even if they offer perfect protection). These globally comprehensive results extend findings from nation-level analyses. They imply that siting rules such as the Convention on Biological Diversity''s 2010 Target [to protect 10% of all ecoregions] might raise PA impacts if applied at the country level. In light of the potential for global carbon-based payments for avoided deforestation or REDD, these results suggest that attention to threat could improve outcomes from the creation and management of PAs.  相似文献   

10.
Introduction – Pyrrolizidine alkaloids (PAs) serve an important function in plant defence. Objective – To compare different extraction methods and detection techniques, namely gas chromatography with nitrogen phosphorus detection (GC‐NPD) and liquid chromatography tandem mass spectrometry (LC‐MS/MS) with quadrupole analysers for analysing PAs in Jacobaea vulgaris. Methodology – Both formic acid and sulfuric acid were tested for PA extraction from dry plant material. For GC‐NPD, reduction is required to transform PA N‐oxides into tertiary amines. Zinc and sodium metabisulfite were compared as reducing agents. Results – The lowest PA concentration measured with GC‐NPD was approximately 0.03 mg/g and with LC‐MS/MS 0.002 mg/g. The detection of major PAs by both techniques was comparable but a number of minor PAs were not detected by GC‐NPD. With the LC‐MS/MS procedure higher concentrations were found in plant extracts, indicating that losses may have occurred during the sample preparation for the GC‐NPD method. Zinc proved a more effective reducing agent than sodium metabisulfite. The sample preparation for LC‐MS/MS analysis using formic acid extraction without any reduction and purification steps is far less complex and less time consuming compared to GC‐NPD analysis with sulfuric acid extraction and PA N‐oxide reduction with zinc and purification. Conclusions – In terms of sensitivity and discrimination, formic acid extraction in combination with LC‐MS/MS detection is the method of choice for analysing PAs (both free and N‐oxides forms) in plant material. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.

Key message

This paper showed that NO, PAs, PA-induced NO, and NO-induced PAs mediate fungus-induced betulin accumulation in birch plantlets.

Abstract

The aim of this study was to investigate the relationship between nitric oxide (NO) and polyamines (PAs) and to determine their roles in betulin accumulation induced by the endophytic fungus Phomopsis in Betula platyphylla. Treatment of birch plantlets with the endophytic fungus Phomopsis promoted an NO burst and accumulation of PAs and betulin. Birch plantlets were treated with the NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) and the PA synthesis inhibitor d-arginine (d-arg). cPTIO and d-arg inhibited the fungus-induced NO burst and accumulation of PAs and betulin. The exogenous NO donor sodium nitroprusside promoted PA production and betulin accumulation, whereas an exogenous PA, putrescine, promoted an NO burst and betulin accumulation. In addition, d-arg inhibited NO production and cPTIO decreased PA production during fungus-induced betulin accumulation. Our results indicate that NO, PAs, PA-induced NO, and NO-induced PAs mediate fungus-induced betulin accumulation in birch plantlets.  相似文献   

12.

Introduction

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites with considerable hepatoxic, tumorigenic and genotoxic potential. For separation, reversed phase chromatography is commonly used because of its excellent compatibility with detection by mass spectrometry. However, reversed phase chromatography has a low selectivity for PAs.

Objective

The objective of this work was to investigate the suitability of cation exchange chromatography for separation of PAs and to develop a rapid method for quantification of jacobine in Crassocephalum crepidioides that is suitable for analysis of huge sample numbers as required for mutant screening procedures.

Results

We demonstrate that cation exchange chromatography offers excellent selectivity for PAs allowing their separation from most other plant metabolites. Due to the high selectivity, plant extracts can be directly analysed after simple sample preparation. Detection with UV at 200 nm instead of mass spectrometry can be applied, which makes the method very simple and cost‐effective. The recovery rate of the method exceeded 95%, the intra‐day and inter‐day standard deviations were below 7% and the limit of detection and quantification were 1 mg/kg and 3 mg/kg, respectively.

Conclusion

The developed method is sufficiently sensitive for reproducible detection of jacobine in C. crepidioides. Simple sample preparation and rapid separation allows for quantification of jacobine in plant material in a high‐throughput manner. Thus, the method is suitable for genetic screenings and may be applicable for other plant species, for instance Jacobaea maritima. In addition, our results show that C. crepidioides cannot be considered safe for human consumption. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Korean kimchi is known for its myriad of lactic acid bacteria (LAB) with diverse bioactive compounds. This study was undertaken to isolate an efficient antifungal LAB strain among the isolated kimchi LABs. One thousand and four hundred LABs isolated from different kimchi samples were initially screened against Aspergillus niger. The strain exhibiting the highest antifungal activity was identified as Lactobacillus plantarum YML007 by 16S rRNA sequencing and biochemical assays using API 50 CHL kit. Lact. plantarum YML007 was further screened against Aspergillus oryzae, Aspergillus flavus, Fusarium oxysporum and other pathogenic bacteria. The morphological changes during the inhibition were assessed by scanning electron microscopy. Preliminary studies on the antifungal compound demonstrated its proteinaceous nature with a molecular weight of 1256·617 Da, analysed by matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry (MALDI‐TOF). The biopreservative activity of Lact. plantarum YML007 was evaluated using dried soybeans. Spores of A. niger were observed in the negative control after 15 days of incubation. However, fungal growth was not observed in the soybeans treated with fivefold concentrated cell‐free supernatant of Lact. plantarum YML007. The broad activity of Lact. plantarum YML007 against various food spoilage moulds and bacteria suggests its scope as a food preservative.

Significance and Impact of the Study

After screening 1400 kimchi bacterial isolates, strain Lactobacillus plantarum YML007 was selected with strong antifungal activity against various foodborne pathogens. From the preliminary studies, it was found that the bioactive compound is a low molecular weight novel protein of 1256·617 Da. Biopreservative potential of Lact. plantarum YML007 was demonstrated on soybean grains, and the results point out YML007 as a potent biopreservative having broad antimicrobial activity against various foodborne pathogens.  相似文献   

14.

Aim

Habitat fragmentation and alien species are among the leading causes of biodiversity loss. In an attempt to reduce the impact of forestry on natural systems, networks of natural corridors and patches of natural habitat are often maintained within the afforested matrix, yet these can be subject to degradation by invasion of non‐native species. Both habitat fragmentation and alien invasive species disrupt the complex interaction networks typical of native communities. This study examines whether an invasive plant and/or the fragmented nature of the forestry landscape influences natural flower visitation networks (FVNs), flower–visitor abundance and richness or flower/visitor species composition.

Location

The species rich and diverse grasslands in the KwaZulu‐Natal Midlands, South Africa is under threat from transformation, particularly by commercial forestry plantations, restricting much of the remaining untransformed grasslands into remnant grassland patches (RGPs). Remaining patches are under additional threat from the invasive Rubus cuneifolius Pursh (bramble). Sites were established in RGPs and in a nearby protected area (PA), with and without brambles present for both areas.

Results

Flower abundance and flower area of native plant species were greater within RGP than in PA, but only in the absence of R. cuneifolius. Flower–visitor assemblages differed between invaded and uninvaded sites and also differed between PA and RGP sites. Both areas lost specialist flower–visitor species in the presence of brambles. Network modularity was greatly reduced by the presence of bramble, indicating a reduction in complexity and organization. The structure of FVNs was otherwise unaffected by presence of bramble or being located in RGPs or the PA.

Main conclusions

The RPGs contribute to regional biodiversity conservation through additional compositional diversity and intact FVNs. Rubus cuneifolius reduces ecological complexity of both RGPs and PAs, however, and its removal must be prioritized to conserve FVNs.  相似文献   

15.
In this work, we reported the synthesis and evaluation of antibacterial and antifungal activities of three new compound series obtained from 6-(phenyl/4-chlorophenyl)imidazo[2,1-b]thiazole-3-acetic acid hydrazide: 2-{[6-(phenyl/4-chlorophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl}-N-alkyl/arylhydrazinecarbothioamides (2a–d), 4-alkyl/aryl-2,4-dihydro-5-{[6-(phenyl/4-chlorophenyl)imidazo[2,1-b]thiazol-3-yl]methyl}-3H-1,2,4-triazole-3-thiones (3a–n), and 2-alkyl/arylamino-5-{[6-(phenyl/4-chlorophenyl)imidazo[2,1-b]thiazol-3-yl]methyl}-1,3,4-thiadiazoles (4a–g). The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR (APT), mass and elemental analysis. Their antibacterial and antifungal activities were evaluated against Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Candida albicans ATCC 10231, C. parapsilosis ATCC 22019, C. krusei ATCC 6258, Trichophyton mentagrophytes var. erinacei NCPF 375, Microsporum gypseum NCPF 580, and T. tonsurans NCPF 245. 3c, 3f, 3m, 3n, and 4e showed the highest antibacterial activity. Particularly 3c, 3f, 3g, 3k, 3n, 4a, 4e, and 4g showed the highest antifungal activity against tested fungi.  相似文献   

16.
A series of novel substituted 1-(4-methoxybenzyl)-3-cyclopropyl-1H-pyrazol-5-amine benzamides 9(a–h) were synthesized to determine their antibacterial and antifungal activities as well as possible structure–activity relationships (SARs) to improve therapeutic efficacy. The pyrazol-5-amine benzamides were screened for their antibacterial activity against standard strains of Gram-positive (Streptococcus pyogenes NCIM 2608, Staphylococcus aureus ATCC 29737, Bacillus subtilis NCIM 2010) and Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 20852, Klebsiella pneumoniae MTCC 618) bacteria by using streptomycin as positive control. They were also tested for their antifungal activities against mycotoxic strains of Fusarium verticillioides, Aspergillus ochraceous, Aspergillus flavus, Alternaria alternata, and Penicillium chrysogenum using nystatin as positive control. Among the synthesized compounds, 9d, 9g, and 9h showed potent antimicrobial activities.  相似文献   

17.
The antioxidant and antibacterial activities, and total phenolic contents of Rosa damascena Mill. flower extracts (absolute, essential oil and hydrosol) were investigated. The chemical compositions of these extracts were analysed by GC-MS. Phenylethyl alcohol (78.38%) was found to be the main constituent of rose absolute, while citrenellol and geraniol were the major compounds (>55%) of rose essential oil and hydrosol. Tocopherol and carotene levels were determined by high performance liquid chromatography (HPLC) analysis. The levels of beta carotene (422.3±35.6 ppm), alpha tocopherol (2397.1±72.5 ppm) and gamma tocopherol (343.1±28.4 ppm) of rose absolute were found to be higher than that of essential oil and hydrosol. Their total phenolic contents were also evaluated. The total phenolic content of the tested extracts varied from 5.2 to 2134.3 GAE/mg L−1. Rose absolute and essential oil contained high levels of phenolics and demonstrated strong antibacterial activity against Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 6538), Chromobacterium violaceum (ATCC 12472) and Erwinia carotovora (ATCC 39048) strains.  相似文献   

18.

Aims

To identify and screen dominant Bacillus spp. strains isolated from Bikalga, fermented seeds of Hibiscus sabdariffa for their antimicrobial activities in brain heart infusion (BHI) medium and in a H. sabdariffa seed‐based medium. Further, to characterize the antimicrobial substances produced.

Methods and Results

The strains were identified by gyrB gene sequencing and phenotypic tests as B. amyloliquefaciens ssp. plantarum. Their antimicrobial activity was determined by the agar spot and well assay, being inhibitory to a wide range of Gram‐positive and Gram‐negative pathogenic bacteria and fungi. Antimicrobial activity against Bacillus cereus was produced in H. sabdariffa seed‐based medium. PCR results revealed that the isolates have potential for the lipopeptides iturin, fengycin, surfactin, the polyketides difficidin, macrolactin, bacillaene and the dipeptide bacilysin production. Ultra‐high‐performance liquid chromatography‐time of flight mass spectrometry analysis of antimicrobial substance produced in BHI broth allowed identification of iturin, fengycin and surfactin.

Conclusions

The Bacillus amyloliquefaciens ssp. plantarum exhibited broad‐spectrum antifungal and antibacterial properties. They produced several lipopeptide antibiotics and showed good potential for biological control of Bikalga.

Significance and Impact of the Study

Pathogenic bacteria often occur in spontaneous food fermentations. This is the first report to identify indigenous B. amyloliquefaciens ssp. plantarum strains as potential protective starter cultures for safeguarding Bikalga.  相似文献   

19.
Polyamines (PAs) are abundant polycationic compounds involved in many physiological processes in plants, including somatic embryogenesis. This study investigates the role of PAs on cellular growth and structure of pro‐embryogenic masses (PEMs), endogenous PA and proton pump activities in embryogenic suspension cultures of Araucaria angustifolia. The embryogenic suspension cultures were incubated with putrescine (Put), spermidine (Spd), spermine (Spm) and the inhibitor methylglyoxal‐bis(guanylhydrazone) (MGBG), respectively (1 mM). After 24 h and 21 days, the cellular growth and structure of PEMs, endogenous PA contents and proton pump activities were analyzed. The addition of Spm reduced the cellular growth and promoted the development of PEMs in embryogenic cultures, which could be associated with a reduction in the activities of proton pumps, such as H+‐ATPase P‐ and V‐types and H+‐PPases, and alterations in the endogenous PA contents. Spm significantly affected the physiology of the A. angustifolia somatic embryogenesis suspension, as it potentially affects cellular growth and structure of PEMs through the modulation of proton pump activities. This work demonstrates the involvement of exogenous PAs in the modulation of cellular growth and structure of PEMs, endogenous PA levels and proton pump activities during somatic embryogenesis. To our knowledge, this study is the first to report a relationship between PAs and proton pump activities in these processes. The results obtained in this study offer new perspectives for studies addressing the role of PAs and proton pump on somatic embryogenesis in this species.  相似文献   

20.

Aims

To characterize fungal antagonistic bacilli isolated from aerial roots of banyan tree and identify the metabolites responsible for their antifungal activity.

Methods and Results

Seven gram positive, endospore‐forming, rod‐shaped endophytic bacterial strains exhibiting a broad‐spectrum antifungal activity were isolated from the surface‐sterilized aerial roots of banyan tree. The isolates designated as K1, A2, A4 and A12 were identified as Bacillus subtilis, whereas isolates A11 and A13 were identified as Bacillus amyloliquefaciens using Biolog Microbial Identification System. The antifungal lipopeptides, surfactins, iturins and fengycins with masses varying in the range from m/z 900 to m/z 1550 could be detected using intact‐cell MALDI‐TOF mass spectrometry (ICMS). On the basis of mass spectral and carbon source utilization profile, all seven endophytes could be distinguished from each other. Furthermore, ICMS analysis revealed higher extent of heterogeneity among iturins and fengycins produced by B. subtilis K1, correlating well with its higher antifungal activity in comparison with other isolates.

Conclusion

Seven fungal antagonistic bacilli were isolated from aerial roots of banyan tree, exhibiting broad spectrum of antifungal activity, among which B. subtilis K1 isolate was found to be most potent. The ICMS analysis revealed that all these isolates produced cyclic lipopeptides belonging to surfactin, iturin and fengycin families and exhibited varying degree of heterogeneity.

Significance and Impact of the study

The endophytes are considered as a potential source of novel bioactive metabolites, and this study describes the potent fungal antagonistic bacilli from aerial roots of banyan tree. The isolates described in this study have a prospective application as biocontrol agents. Also ICMS analysis described in this study for characterization of antifungal metabolites produced by banyan endophytic bacilli may be used as a high throughput tool for screening of microbes producing novel cyclic lipopeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号