首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sex determination is the commitment of an embryo to either the female or the male developmental pathway. The ratio of X chromosomes to sets of autosomes is the primary genetic signal that determines sex in Drosophila, by triggering the functional state of the gene Sex-lethal: in females (2X;2A) Sxl will be ON, whereas in males (X;2A) Sxl will be OFF. Genetic and molecuar studies have defined a set of genes involved in the formation of the X:A signal, as well as other genes, with either maternal or zygotic effects, which are also involved in regulating the initial step of Sex-lethal activation. We review these data and present new data on two more regions of the X chromosome that define other genes needed for Sxl activation. In addition, we report on the interaction between some of the genes regulating Sxl activation. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Annick Sawala 《Fly》2018,12(2):133-141
Sexual size dimorphism (SSD), a sex difference in body size, is widespread throughout the animal kingdom, raising the question of how sex influences existing growth regulatory pathways to bring about SSD. In insects, somatic sexual differentiation has long been considered to be controlled strictly cell-autonomously. Here, we discuss our surprising finding that in Drosophila larvae, the sex determination gene Sex-lethal (Sxl) functions in neurons to non-autonomously specify SSD. We found that Sxl is required in specific neuronal subsets to upregulate female body growth, including in the neurosecretory insulin producing cells, even though insulin-like peptides themselves appear not to be involved. SSD regulation by neuronal Sxl is also independent of its known splicing targets, transformer and msl-2, suggesting that it involves a new molecular mechanism. Interestingly, SSD control by neuronal Sxl is selective for larval, not imaginal tissue types, and operates in addition to cell-autonomous effects of Sxl and Tra, which are present in both larval and imaginal tissues. Overall, our findings add to a small but growing number of studies reporting non-autonomous, likely hormonal, control of sex differences in Drosophila, and suggest that the principles of sexual differentiation in insects and mammals may be more similar than previously thought.  相似文献   

4.
5.
6.
New deleterious mutations may reduce health and fitness and are involved in the evolution and maintenance of numerous biological processes. Hence, it is important to estimate the deleterious genomic mutation rate (U) in representative higher organisms. However, these estimated rates vary widely, mainly because of inadequate experimental controls. Here we describe an experimental design (the Binscy assay) with concomitant sibling controls and estimate U for viability in Drosophila melanogaster to be 0.31. This estimate, like most published studies, focuses on viability mutations and the overall deleterious genomic mutation rate would therefore be higher.  相似文献   

7.
8.
9.
McGill S  Chia W  Karp R  Ashburner M 《Genetics》1988,119(3):647-661
A dominant mutation of Drosophila melanogaster, Scutoid (Sco), acts as an antimorphic allele of the no-ocelli (noc) gene. In Sco the noc region has been transposed from 35B to 35D on chromosome arm 2L and the noc gene is now adjacent to snail (sna). Induced revertants of Sco are frequently mutant for sna or are aberrations broken very close to sna. A molecular analysis of the Sco chromosome has confirmed that noc is transposed and fused to the sna region. However, only part of the noc region is included within the transposition. The breakpoints of 19 chromosomally aberrant Sco revertants have been mapped at the molecular level. Fourteen of these breakpoints map to the noc region, spread over about 80 kb of DNA. The breakpoints of the remaining five are not within the DNA of the noc region and appear to map within sequences from the sna region. This has been shown directly for three of these, those associated with T(2;3)ScoR+13, In(2L)ScoR+24 and In(2L)ScoR+26. Thus mutation of either noc or sna, genes which are apparently unrelated in their wild-type functions, can revert the antimorphic phenotype of Sco.  相似文献   

10.
Vazquez J  Schedl P 《Genetics》2000,155(3):1297-1311
Eukaryotic chromosomes are thought to be subdivided into a series of structurally and functionally independent units. Critical to this hypothesis is the identification of insulator or boundary elements that delimit chromosomal domains. The properties of a Notch mutation, facet-strawberry (fa(swb)), suggest that this small deletion disrupts such a boundary element. fa(swb) is located in the interband separating polytene band 3C7, which contains Notch, from the distal band 3C6. The fa(swb) mutation alters the structural organization of the chromosome by deleting the interband and fusing 3C7 with 3C6. Genetic studies also suggest that fa(swb) compromises the functional autonomy of Notch by allowing the locus to become sensitive to chromosomal position effects emanating from distal sequences. In the studies reported here, we show that a DNA fragment spanning the fa(swb) region can insulate reporter transgenes against chromosomal position effects and can block enhancer-promoter interactions. Moreover, we find that insulating activity is dependent on sequences deleted in fa(swb). These results provide evidence that the element defined by the fa(swb) mutation corresponds to an insulator.  相似文献   

11.
12.
13.
14.
A third chromosome mutator gene effectively increases the spontaneous frequency of sex-linked recessive lethals in females but not in females of Drosophila melanogaster. Approximately half the mutator-induced mutants occur as clusters of the same mutant implying a premeiotic origin. An appreciable number of the mutator-induced lethals are associated with comparatively long deficiencies of several salivary gland chromosome bands. The possible modes of mutator gene action are conjectured.  相似文献   

15.
Mela A  Tsitilou SG  Yannopoulos G 《Genetica》2009,135(3):333-345
In this study, we characterize a recessive X-linked temperature-sensitive mutation of the gene CG32711. The mutation, named wiser tsl (wings scalloped-eyes rough), was isolated from a dysgenic cross and is due to a natural P element insertion within the 5′ regulatory region of the gene. Mutant (wiser tsl ) individuals exhibit wing notching, rough eyes, tarsal malformations and reduced life-span. At 29°C they die at larval and late pharate stages or during eclosion. The CG32711 (wiser) gene is mainly expressed in the ventral midline cells, the peripheral neural system, the hemocytes and the tracheal system of embryos. It is also expressed in nurse cells of adult female ovaries. Our results show that the wiser gene is alternatively spliced generating two mRNAs, which share the same open reading frame, while western analysis identified two protein isoforms. Their expression pattern depends on the stage of development and the culture temperature. wiser tsl and wild-type individuals display different expression patterns of the two isoforms and this difference most probably accounts for the mutant phenotype. Our results indicate that wiser is a vital gene for the development of Drosophila melanogaster which has no orthologs outside the Drosophilidae. Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. bankit1003537 EU071463–bankit1003860 EU071464.  相似文献   

16.
17.
18.
What selective processes underlie the evolution of parasites and their hosts? Arms-race models propose that new host-resistance mutations or parasite counter-adaptations arise and sweep to fixation. Frequency-dependent models propose that selection favours pathogens adapted to the most common host genotypes, conferring an advantage to rare host genotypes. Distinguishing between these models is empirically difficult. The maintenance of disease-resistance polymorphisms has been studied in detail in plants, but less so in animals, and rarely in natural populations. We have made a detailed study of genetic variation in host resistance in a natural animal population, Drosophila melanogaster, and its natural pathogen, the sigma virus. We confirm previous findings that a single (albeit complex) mutation in the gene ref(2)P confers resistance against sigma and show that this mutation has increased in frequency under positive selection. Previous studies suggested that ref(2)P polymorphism reflects the progress of a very recent selective sweep, and that in Europe during the 1980s, this was followed by a sweep of a sigma virus strain able to infect flies carrying this mutation. We find that the ref(2)P resistance mutation is considerably older than the recent spread of this viral strain and suggest that—possibly because it is recessive—the initial spread of the resistance mutation was very slow.  相似文献   

19.
20.
Microsatellite mutations were studied in a set of 175 mutation accumulation lines, all of them independently derived from a completely homozygous population of Drosophila melanogaster and maintained under strong inbreeding during 80 generations. We assayed 28 microsatellites and detected two mutations. One mutation consisted of a single addition of a dinucleotide repeat and the other was a deletion of five trinucleotide repeats. The average mutation rate was 5.1 x 10(-6), in full agreement with previous estimates from two different sets of mutation accumulation lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号