首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
While a large number of aerobic free-living protists have been described within the last decade, the number of new anaerobic or microaerophilic microbial eukaryotic taxa has lagged behind. Here we describe a microaerophilic genus and species of amoeboflagellate isolated from a near-shore marine site off the coast at Plymouth, Massachusetts: Subulatomonas tetraspora nov. gen. nov. sp. This taxon is closely related to Breviata anathema based on both microscopical features and phylogenetic analyses of sequences of three genes: SSU-rDNA, actin, and alpha-tubulin. However, Subulatomonas tetraspora nov. gen. nov. sp. and B. anathema are morphologically distinctive, differ by 14.9% at their SSU-rDNA locus, and were isolated from marine and 'slightly brackish' environments, respectively. Phylogenetic analyses of these two taxa plus closely related sequences from environmental surveys provide support for a novel clade of eukaryotes that is distinct from the major clades including the Opisthokonta, Excavata, Amoebozoa and 'SAR' (Stramenopile, Alveolate, Rhizaria).  相似文献   

3.

Background  

Our understanding of the eukaryotic tree of life and the tremendous diversity of microbial eukaryotes is in flux as additional genes and diverse taxa are sampled for molecular analyses. Despite instability in many analyses, there is an increasing trend to classify eukaryotic diversity into six major supergroups: the 'Amoebozoa', 'Chromalveolata', 'Excavata', 'Opisthokonta', 'Plantae', and 'Rhizaria'. Previous molecular analyses have often suffered from either a broad taxon sampling using only single-gene data or have used multigene data with a limited sample of taxa. This study has two major aims: (1) to place taxa represented by 72 sequences, 61 of which have not been characterized previously, onto a well-sampled multigene genealogy, and (2) to evaluate the support for the six putative supergroups using two taxon-rich data sets and a variety of phylogenetic approaches.  相似文献   

4.
Here we use phylogenomics with expressed sequence tag (EST) data from the ecologically important coccolithophore-forming alga Emiliania huxleyi and the plastid-lacking cryptophyte Goniomonas cf. pacifica to establish their phylogenetic positions in the eukaryotic tree. Haptophytes and cryptophytes are members of the putative eukaryotic supergroup Chromalveolata (chromists [cryptophytes, haptophytes, stramenopiles] and alveolates [apicomplexans, ciliates, and dinoflagellates]). The chromalveolates are postulated to be monophyletic on the basis of plastid pigmentation in photosynthetic members, plastid gene and genome relationships, nuclear "host" phylogenies of some chromalveolate lineages, unique gene duplication and replacements shared by these taxa, and the evolutionary history of components of the plastid import and translocation systems. However the phylogenetic position of cryptophytes and haptophytes and the monophyly of chromalveolates as a whole remain to be substantiated. Here we assess chromalveolate monophyly using a multigene dataset of nuclear genes that includes members of all 6 eukaryotic supergroups. An automated phylogenomics pipeline followed by targeted database searches was used to assemble a 16-protein dataset (6,735 aa) from 46 taxa for tree inference. Maximum likelihood and Bayesian analyses of these data support the monophyly of haptophytes and cryptophytes. This relationship is consistent with a gene replacement via horizontal gene transfer of plastid-encoded rpl36 that is uniquely shared by these taxa. The haptophytes + cryptophytes are sister to a clade that includes all other chromalveolates and, surprisingly, two members of the Rhizaria, Reticulomyxa filosa and Bigelowiella natans. The association of the two Rhizaria with chromalveolates is supported by the approximately unbiased (AU)-test and when the fastest evolving amino acid sites are removed from the 16-protein alignment.  相似文献   

5.
In this study, mitochondrial sequences were used to investigate the relationships among the major lineages of Arthropoda. The data matrix used for the analyses includes 84 taxa and 3918 nucleotides representing six mitochondrial protein-coding genes (atp6 and 8, cox1-3, and nad2). The analyses of nucleotide composition show that a reverse strand-bias, i.e., characterized by an excess of T relative to A nucleotides and of G relative to C nucleotides, was independently acquired in six different lineages of Arthropoda: (1) the honeybee mite (Varroa), (2) Opisthothelae spiders (Argiope, Habronattus, and Ornithoctonus), (3) scorpions (Euscorpius and Mesobuthus), (4) Hutchinsoniella (Cephalocarid), (5) Tigriopus (Copepod), and (6) whiteflies (Aleurodicus and Trialeurodes). Phylogenetic analyses confirm that these convergences in nucleotide composition can be particularly misleading for tree reconstruction, as unrelated taxa with reverse strand-bias tend to group together in MP, ML, and Bayesian analyses. However, the use of a specific model for minimizing effects of the bias, the "Neutral Transition Exclusion" (NTE) model, allows Bayesian analyses to rediscover most of the higher taxa of Arthropoda. Furthermore, the analyses of branch lengths suggest that three main factors explain accelerated rates of substitution: (1) genomic rearrangements, including duplication of the control region and gene translocation, (2) parasitic lifestyle, and (3) small body size. The comparisons of Bayesian Bootstrap percentages show that the support for many nodes increases when taxa with long branches are excluded from the analyses. It is therefore recommended to select taxa and genes of the mitochondrial genome for inferring phylogenetic relationships among arthropod lineages. The phylogenetic analyses support the existence of a major dichotomy within Arthropoda, separating Pancrustacea and Paradoxopoda. Basal relationships between Pancrustacean lineages are not robust, and the question of Hexapod monophyly or polyphyly cannot be answered with the available mitochondrial sequences. Within Paradoxopoda, Chelicerata and Myriapoda are each found to be monophyletic, and Endeis (Pycnogonida) is, surprisingly, associated with Acari.  相似文献   

6.
Dinoflagellates and apicomplexans are a strongly supported monophyletic group in rDNA phylogenies, although this phylogeny is not without controversy, particularly between the two groups. Here we use concatenated protein-coding genes from expressed sequence tags or genomic data to construct phylogenies including "typical" dinophycean dinoflagellates, a parasitic syndinian dinoflagellate, Amoebophrya sp., and two related species, Oxyrrhis marina, and Perkinsus marinus. Seventeen genes encoding proteins associated with the ribosome were selected for phylogenetic analysis. The dataset was limited for the most part by data availability from the dinoflagellates. Forty-five taxa from four major lineages were used: the heterokont outgroup, ciliates, dinoflagellates, and apicomplexans. Amoebophrya sp. was included in this phylogeny as a sole representative of the enigmatic marine alveolate or syndinian lineage. The atypical dinoflagellate O. marina, usually excluded from rDNA analyses due to long branches, was also included. The resulting phylogenies were well supported in concatenated analyses with only a few unstable or weakly supported branches; most features were consistent when different lineages were pruned from the tree or different genes were concatenated. The least stable branches involved the placement of Cryptosporidium spp. within the Apicomplexa and the relationships between P. marinus, Amoebophrya sp., and O. marina. Both bootstrap and approximately unbiased test results confirmed that P. marinus, Amoebophrya sp., O. marina, and the remaining dinoflagellates form a monophyletic lineage to the exclusion of Apicomplexa.  相似文献   

7.
Microhexura montivaga is a miniature tarantula‐like spider endemic to the highest peaks of the southern Appalachian mountains and is known only from six allopatric, highly disjunct montane populations. Because of severe declines in spruce‐fir forest in the late 20th century, M. montivaga was formally listed as a US federally endangered species in 1995. Using DNA sequence data from one mitochondrial and seven nuclear genes, patterns of multigenic genetic divergence were assessed for six montane populations. Independent mitochondrial and nuclear discovery analyses reveal obvious genetic fragmentation both within and among montane populations, with five to seven primary genetic lineages recovered. Multispecies coalescent validation analyses [guide tree and unguided Bayesian Phylogenetics and Phylogeography (BPP), Bayes factor delimitation (BFD)] using nuclear‐only data congruently recover six or seven distinct lineages; BFD analyses using combined nuclear plus mitochondrial data favour seven or eight lineages. In stark contrast to this clear genetic fragmentation, a survey of secondary sexual features for available males indicates morphological conservatism across montane populations. While it is certainly possible that morphologically cryptic speciation has occurred in this taxon, this system may alternatively represent a case where extreme population genetic structuring (but not speciation) leads to an oversplitting of lineage diversity by multispecies coalescent methods. Our results have clear conservation implications for this federally endangered taxon and illustrate a methodological issue expected to become more common as genomic‐scale data sets are gathered for taxa found in naturally fragmented habitats.  相似文献   

8.
The Viridiplantae are subdivided into two groups: the Chlorophyta, which includes the Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Prasinophyceae; and the Streptophyta, which includes the Charophyceae and all land plants. Within the Streptophyta, the actin genes of the angiosperms diverge nearly simultaneously from each other before the separation of monocots and dicots. Previous evolutionary analyses have provided limited insights into the gene duplications that have produced these complex gene families. We address the origin and diversification of land plant actin genes by studying the phylogeny of actins within the green algae, ferns, and fern allies. Partial genomic sequences or cDNAs encoding actin were characterized from Cosmarium botrytis (Zygnematales), Selaginella apoda (Selaginellales), Anemia phyllitidis (Polypodiales), and Psilotum triquetrum (Psilotales). Selaginella contains at least two actin genes. One sequence (Ac2) diverges within a group of fern sequences that also includes the Psilotum Ac1 actin gene and one gymnosperm sequence (Cycas revoluta Cyc3). This clade is positioned outside of the angiosperm actin gene radiation. The second Selaginella sequence (Ac1) is the sister to all remaining land plant actin sequences, although the internal branches in this portion of the tree are very short. Use of complete actin-coding regions in phylogenetic analyses provides support for the separation of angiosperm actins into two classes. N-terminal "signature" sequence analyses support these groupings. One class (VEG) includes actin genes that are often expressed in vegetative structures. The second class (REP) includes actin genes that trace their ancestry within the vegetative actins and contains members that are largely expressed in reproductive structures. Analysis of intron positions within actin genes shows that sequences from both Selaginella and Cosmarium contain the conserved 20-3, 152-1, and 356-3 introns found in many members of the Streptophyta. In addition, the Cosmarium actin gene contains a novel intron at position 76-1.  相似文献   

9.
10.
Recent studies of the Chlorophyceae using 18S and 26S rDNA data in meta‐analysis have demonstrated the power of combining these two sets of rDNA data. Furthermore, the 26S rDNA data complement the more conserved 18S gene for many chlorophycean lineages. Consequently, this data approach was pursued in an expanded taxon‐sampling scheme for the Chlorophyta, with special reference to the classes Chlorophyceae and Trebouxiophyceae. Results of these new phylogenetic analyses identify Microspora sp. (UTEX LB 472) and Radiofilum transversale (UTEX LB 1252) as sister taxa which, in turn, form a basal clade in the Cylindrocapsa alliance (Treubaria, Trochiscia, Elakatothrix). The relative position of the “Cylindrocapsa” clade within the Chlorophyceae remains uncertain. The enhanced taxon‐sampling has not resolved the relative positions of the Oedogoniales, Chaetophorales or Chaetopeltidales. Furthermore, the Sphaeropleaceae are supported as members of the Sphaeropleales in only some analyses, raising concerns about the status of the order. Although based on a limited set of taxa (currently <10), a combined data approach reveals support for a monophyletic Trebouxiophyceae that includes the distinctive organisms, Geminella and Eremosphaera. The goal of a well‐resolved phylogeny for the Chlorophyta remains just that, a goal. Achieving that goal obviously will require additional taxon sampling in the Prasinophyceae and Ulvophyceae, as well as, the Trebouxiophyceae. Moreover, it is clear that other genes (e.g., cp‐atpB, cp‐rbcL, cp‐16S, mt‐nad5) will be needed to help address problems of resolution based on the rDNA data alone. Supported by NSF DEB 9726588 and DEB 0129030.  相似文献   

11.
Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca)   总被引:4,自引:0,他引:4  
Caenogastropoda is the dominant group of marine gastropods in terms of species numbers, diversity of habit and habitat and ecological importance. This paper reports the first comprehensive multi-gene phylogenetic study of the group. Data were collected from up to six genes comprising parts of 18S rRNA, 28S rRNA (five segments), 12S rRNA, cytochrome c oxidase subunit I, histone H3 and elongation factor 1alpha. The alignment has a combined length of 3995 base positions for 36 taxa, comprising 29 Caenogastropoda representing all of its major lineages and seven outgroups. Maximum parsimony, maximum likelihood and Bayesian analyses were conducted. The results generally support monophyly of Caenogastropoda and Hypsogastropoda (Caenogastropoda excepting Architaenioglossa, Cerithioidea and Campanilioidea). Within Hypsogastropoda, maximum likelihood and Bayesian analyses identified a near basal clade of nine or 10 families lacking an anterior inhalant siphon, and Cerithiopsidae s.l. (representing Triphoroidea), where the siphon is probably derived independently from other Hypsogastropoda. The asiphonate family Eatoniellidae was usually included in the clade but was removed in one Bayesian analysis. Of the two other studied families lacking a siphon, the limpet-shaped Calyptraeidae was associated with this group in some analyses, but the tent-shaped Xenophoridae was generally associated with the siphonate Strombidae. The other studied hypsogastropods with an anterior inhalant siphon include nine families, six of which are Neogastropoda, the only traditional caenogastropod group above the superfamily-level with strong morphological support. The hypotheses that Neogastropoda are monophyletic and that the group occupies a derived position within Hypsogastropoda are both contradicted, but weakly, by the molecular analyses. Despite the addition of large amounts of new molecular data, many caenogastropod lineages remain poorly resolved or unresolved in the present analyses, possibly due to a rapid radiation of the Hypsogastropoda following the Permian-Triassic extinction during the early Mesozoic.  相似文献   

12.
Elongation factor 1 alpha (EF-1 alpha) is a highly conserved ubiquitous protein involved in translation that has been suggested to have desirable properties for phylogenetic inference. To examine the utility of EF-1 alpha as a phylogenetic marker for eukaryotes, we studied three properties of EF-1 alpha trees: congruency with other phyogenetic markers, the impact of species sampling, and the degree of substitutional saturation occurring between taxa. Our analyses indicate that the EF-1 alpha tree is congruent with some other molecular phylogenies in identifying both the deepest branches and some recent relationships in the eukaryotic line of descent. However, the topology of the intermediate portion of the EF-1 alpha tree, occupied by most of the protist lineages, differs for different phylogenetic methods, and bootstrap values for branches are low. Most problematic in this region is the failure of all phylogenetic methods to resolve the monophyly of two higher-order protistan taxa, the Ciliophora and the Alveolata. JACKMONO analyses indicated that the impact of species sampling on bootstrap support for most internal nodes of the eukaryotic EF-1 alpha tree is extreme. Furthermore, a comparison of observed versus inferred numbers of substitutions indicates that multiple overlapping substitutions have occurred, especially on the branch separating the Eukaryota from the Archaebacteria, suggesting that the rooting of the eukaryotic tree on the diplomonad lineage should be treated with caution. Overall, these results suggest that the phylogenies obtained from EF-1 alpha are congruent with other molecular phylogenies in recovering the monophyly of groups such as the Metazoa, Fungi, Magnoliophyta, and Euglenozoa. However, the interrelationships between these and other protist lineages are not well resolved. This lack of resolution may result from the combined effects of poor taxonomic sampling, relatively few informative positions, large numbers of overlapping substitutions that obscure phylogenetic signal, and lineage-specific rate increases in the EF-1 alpha data set. It is also consistent with the nearly simultaneous diversification of major eukaryotic lineages implied by the "big-bang" hypothesis of eukaryote evolution.  相似文献   

13.
Early evolution and the origin of eukaryotes   总被引:35,自引:0,他引:35  
Our understanding of evolutionary relationships in the eukaryotic world has been revolutionized by molecular systematics. Phylogenies based upon comparisons of rRNAs define five major eukaryotic assemblages plus a series of paraphyletic protist lineages. Comparison of conserved genes that were duplicated prior to the divergence of eubacteria, archaebacteria, and eukaryotes, positions the root of the universal tree within the eubacterial line of descent. In this review a novel model is presented which uses the rRNA and protein based phylogenies to describe the evolutionary origins of eukaryotes.  相似文献   

14.
ABSTRACT. The amoebae and amoeboid protists form a large and diverse assemblage of eukaryotes characterized by various types of pseudopodia. For convenience, the traditional morphology‐based classification grouped them together in a macrotaxon named Sarcodina. Molecular phylogenies contributed to the dismantlement of this assemblage, placing the majority of sarcodinids into two new supergroups: Amoebozoa and Rhizaria. In this review, we describe the taxonomic composition of both supergroups and present their small subunit rDNA‐based phylogeny. We comment on the advantages and weaknesses of these phylogenies and emphasize the necessity of taxon‐rich multigene datasets to resolve phylogenetic relationships within Amoebozoa and Rhizaria. We show the importance of environmental sequencing as a way of increasing taxon sampling in these supergroups. Finally, we highlight the interest of Amoebozoa and Rhizaria for understanding eukaryotic evolution and suggest that resolving their phylogenies will be among the main challenges for future phylogenomic analyses.  相似文献   

15.
We present phylogenetic hypotheses for the major iguanian lizard lineages and several squamate outgroups using a combined analysis of 4950 aligned base positions representing two intronless nuclear genes, TSHZ1 and RAG1. Bayesian analyses using reversible jump (RJ) mixture model selection are conducted and compared with a priori partitioned, mixed model maximum likelihood analyses. Bayesian credibility values and ML bootstraps are comparable with strong support at deep nodes and within acrodonts, but weak support for the twelve iguanid lineages. Accounting for pattern and rate heterogeneity is becoming commonplace and is essential for accurate phylogeny reconstruction.  相似文献   

16.
Ancient phylogenetic relationships   总被引:10,自引:0,他引:10  
Traditional views on deep evolutionary events have been seriously challenged over the last few years, following the identification of major pitfalls affecting molecular phylogeny reconstruction. Here we describe the principally encountered artifacts, notably long branch attraction, and their causes (i.e., difference in evolutionary rates, mutational saturation, compositional biases). Additional difficulties due to phenomena of biological nature (i.e., lateral gene transfer, recombination, hidden paralogy) are also discussed. Moreover, contrary to common beliefs, we show that the use of rare genomic events can also be misleading and should be treated with the same caution as standard molecular phylogeny. The universal tree of life, as described in most textbooks, is partly affected by tree reconstruction artifacts, e.g. (i) the bacterial rooting of the universal tree of life; (ii) the early emergence of amitochondriate lineages in eukaryotic phylogenies; and (iii) the position of hyperthermophilic taxa in bacterial phylogenies. We present an alternative view of this tree, based on recent evidence obtained from reanalyses of ancient data sets and from novel analyses of large combination of genes.  相似文献   

17.
Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs), intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates]) was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA), disruption of the monophyly between haptophytes and SAR (or SA) in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA) clade in the absence of intracellular endoparasite/ciliate OTUs.  相似文献   

18.
19.
Molecular phylogenetic analyses have recently shown that the unicellular amoeboid protist Capsaspora owczarzaki is unlikely to be a nucleariid or an ichthyosporean as previously described, but is more closely related to Metazoa, Choanoflagellata, and Ichthyosporea. However, the specific phylogenetic relationship of Capsaspora to other protist opisthokont lineages was poorly resolved. To test these earlier results we have expanded both the taxonomic sampling and the number of genes from opisthokont unicellular lineages. We have sequenced the protein-coding genes elongation factor 1-alpha (EF1-alpha) and heat shock protein 70 (Hsp70) from C. owczarzaki and the ichthyosporean Sphaeroforma arctica. Our maximum likelihood (ML) and Bayesian analyses of a concatenated alignment of EF1-alpha, Hsp70, and actin protein sequences with a better sampling of opisthokont-related protist lineages indicate that C. owczarzaki is not clearly allied with any of the unicellular opisthokonts, but represents an independent unicellular lineage closely related to animals and choanoflagellates. Moreover, we have found that the ichthyosporean S. arctica possesses an EF-like (EFL) gene copy instead of the canonical EF1-alpha, the first so far described in an ichthyosporean. A maximum likelihood phylogenetic analysis shows that the EF-like gene of S. arctica strongly groups with the EF-like genes from choanoflagellates. Finally, to begin characterizing the Capsaspora genome, we have performed pulsed-field gel electrophoresis (PFGE) analyses, which indicate that its genome has at least 12 chromosomes with a total genome size in the range of 22-25 Mb.  相似文献   

20.
Recent studies of the Chlorophyceae using 18S and 26S rDNA data in meta-analysis have demonstrated the power of combining these two sets of rDNA data. Furthermore, the 26S rDNA data complement the more conserved 18S gene for many chlorophycean lineages. Consequently, this data approach was pursued in an expanded taxon-sampling scheme for the Chlorophyta, with special reference to the classes Chlorophyceae and Trebouxiophyceae. Results of these new phylogenetic analyses identify Microspora sp. (UTEX LB 472) and Radiofilum transversale (UTEX LB 1252) as sister taxa which, in turn, form a basal clade in the Cylindrocapsa alliance (Treubaria, Trochiscia, Elakatothrix). The relative position of the "Cylindrocapsa" clade within the Chlorophyceae remains uncertain. The enhanced taxon-sampling has not resolved the relative positions of the Oedogoniales, Chaetophorales or Chaetopeltidales. Furthermore, the Sphaeropleaceae are supported as members of the Sphaeropleales in only some analyses, raising concerns about the status of the order. Although based on a limited set of taxa (currently <10), a combined data approach reveals support for a monophyletic Trebouxiophyceae that includes the distinctive organisms, Geminella and Eremosphaera. The goal of a well-resolved phylogeny for the Chlorophyta remains just that, a goal. Achieving that goal obviously will require additional taxon sampling in the Prasinophyceae and Ulvophyceae, as well as, the Trebouxiophyceae. Moreover, it is clear that other genes (e.g., cp-atpB, cp-rbcL, cp-16S, mt-nad5) will be needed to help address problems of resolution based on the rDNA data alone. Supported by NSF DEB 9726588 and DEB 0129030.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号