共查询到20条相似文献,搜索用时 0 毫秒
1.
An imidazole-containing polyamide trimer, f-ImImIm, where f is a formamido group, was recently found using NMR methods to recognize T·G mismatched base pairs. In order to characterize in detail the T·G recognition affinity and specificity of imidazole-containing polyamides, f-ImIm, f-ImImIm and f-PyImIm were synthesized. The kinetics and thermodynamics for the polyamides binding to Watson–Crick and mismatched (containing one or two T·G, A·G or G·G mismatched base pairs) hairpin oligonucleotides were determined by surface plasmon resonance and circular dichroism (CD) methods. f-ImImIm binds significantly more strongly to the T·G mismatch-containing oligonucleotides than to the sequences with other mismatched or with Watson–Crick base pairs. Compared with the Watson–Crick CCGG sequence, f-ImImIm associates more slowly with DNAs containing T·G mismatches in place of one or two C·G base pairs and, more importantly, the dissociation rate from the T·G oligonucleotides is very slow (small kd). These results clearly demonstrate the binding selectivity and enhanced affinity of side-by-side imidazole/imidazole pairings for T·G mismatches and show that the affinity and specificity increase arise from much lower kd values with the T·G mismatched duplexes. CD titration studies of f-ImImIm complexes with T·G mismatched sequences produce strong induced bands at ~330 nm with clear isodichroic points, in support of a single minor groove complex. CD DNA bands suggest that the complexes remain in the B conformation. 相似文献
2.
Imidazole-imidazole pair as a minor groove recognition motif for T:G mismatched base pairs. 下载免费PDF全文
X L Yang R B Hubbard M Lee Z F Tao H Sugiyama A H Wang 《Nucleic acids research》1999,27(21):4183-4190
The T:G mismatched base pair is associated with many genetic mutations. Understanding its biological consequences may be aided by studying the structural perturbation of DNA caused by a T:G base pair and by specific probing of the mismatch using small molecular ligands. We have shown previously that AR-1-144, a tri-imidazole (Im-Im-Im) minor groove binder, recognizes the sequence CCGG. NMR structural analysis of the symmetric 2:1 complex of AR-1-144 and GAACCGGTTC revealed that each AR-1-144 binds to four base pairs with the guanine N2 amino group forming a bifurcated hydrogen bond to a side-by-side Im/Im pair. We predicted that the free G-N2 amino group in a T:G wobble base pair can form two individual hydrogen bonds to a side-by-side Im/Im pair. Thus an Im/Im pair may be a good recognition motif for a T:G base pair in DNA. Cooperative and tight binding of an AR-1-144 homodimer to GAACTGGTTC permits a detailed structural analysis by 2D NOE NMR refinement and the refined structure confirms our prediction. Surprisingly, AR-1-144 does not bind to GAATCGGTTC. We further show that both the Im-Im-Im/Im-Py-Im heterodimer and the Im-Im-Im/Im-Im-Im homodimer bind strongly to the CACGGGTC + GACTCGTG duplex. These results together suggest that an Im/Im pair can specifically recognize a single T:G mismatch. Our results may be useful in future design of molecules (e.g. linked dimers) that can recognize a single T:G mismatch with specificity. 相似文献
3.
4.
Dynamics of mismatched base pairs in DNA 总被引:15,自引:0,他引:15
The structural dynamics of mismatched base pairs in duplex DNA have been studied by time-resolved fluorescence anisotropy decay measurements on a series of duplex oligodeoxynucleotides of the general type d[CGG(AP)GGC].d[GCCXCCG], where AP is the fluorescent adenine analogue 2-aminopurine and X = T, A, G, or C. The anisotropy decay is caused by internal rotations of AP within the duplex, which occur on the picosecond time scale, and by overall rotational diffusion of the duplex. The correlation time and angular range of internal rotation of AP vary among the series of AP.X mismatches, showing that the native DNA bases differ in their ability to influence the motion of AP. These differences are correlated with the strength of base-pairing interactions in the various AP.X mismatches. The interactions are strongest with X = T or C. The ability to discern differences in the strength of base-pairing interactions at a specific site in DNA by observing their effect on the dynamics of base motion is a novel aspect of the present study. The extent of AP stacking within the duplex is also determined in this study since it influences the excited-state quenching of AP. AP is thus shown to be extrahelical in the AP.G mismatch. The association state of the AP-containing oligodeoxynucleotide strand is determined from the temperature-dependent tumbling correlation time. An oligodeoxynucleotide triplex is formed with a particular base sequence in a pH-dependent manner. 相似文献
5.
Patricia J. Pukkila 《Molecular & general genetics : MGG》1978,161(3):245-250
Summary The activity of Ustilago maydis DNAse I, an enzyme implicated in genetic recombination, on DNA substrates containing unpaired or mismatched bases, was examined. The enzyme nicked supercoiled PM-2 molecules, converting these to relaxed circular and linear molecules. Discrete double stranded linear fragments smaller than unit length were also observed after digestion at high enzyme concentration. Heteroduplex molecules were constructed using 80 bacteriophage derivatives which contained single base substitutions within the E. coli tRNA
1
tyr
gene. Single and double stranded nicking at or near the single mismatched site was observed with three out of the five pairs of heteroduplexes. 相似文献
6.
Hydrolysis by restriction endonucleases at their DNA recognition sequences substituted with mismatched base pairs. 总被引:1,自引:5,他引:1 下载免费PDF全文
Restriction endonucleases were tested for their ability to catalyze the cleavage of mismatch-containing recognition sites in DNA. These mismatched base pairs were T.G, U.G, or A.C in covalently closed, circular heteroduplexes prepared by in vitro extension of chemically synthesized oligonucleotide primers annealed to a bacteriophage M13-derived viral DNA. None of the restriction enzymes was able to completely cleave the mismatch-containing recognition sites under standard conditions. However, three of them, SmaI, SalI, and SstI, catalyzed partial digestion leading to an accumulation of DNA singly nicked at the mismatched recognition site. The ability of SmaI and SstI to partially cleave at a mismatch was shown to depend on the nature and position of the mismatch within the corresponding recognition site. In contrast, little or no digestion was obtained with AccI, HincII, HindIII, and KpnI at mismatch-containing sites. Therefore, in some cases a transition-type substitution in only one strand of a recognition site inhibits restriction endonuclease-catalyzed digestion at that site although in others partial digestion occurs. 相似文献
7.
Structures of mismatched base pairs in DNA and their recognition by the Escherichia coli mismatch repair system. 总被引:8,自引:1,他引:7 下载免费PDF全文
G V Fazakerley E Quignard A Woisard W Guschlbauer G A van der Marel J H van Boom M Jones M Radman 《The EMBO journal》1986,5(13):3697-3703
The Escherichia coli mismatch repair system does not recognize and/or repair all mismatched base pairs with equal efficiency: whereas transition mismatches (G X T and A X C) are well repaired, the repair of some transversion mismatches (e.g. A X G or C X T) appears to depend on their position in heteroduplex DNA of phage lambda. Undecamers were synthesized and annealed to form heteroduplexes with a single base-pair mismatch in the centre and with the five base pairs flanking each side corresponding to either repaired or unrepaired heteroduplexes of lambda DNA. Nuclear magnetic resonance (n.m.r.) studies show that a G X A mismatch gives rise to an equilibrium between fully helical and a looped-out structure. In the unrepaired G X A mismatch duplex the latter predominates, while the helical structure is predominant in the case of repaired G X A and G X T mismatches. It appears that the E. coli mismatch repair enzymes recognize and repair intrahelical mismatched bases, but not the extrahelical bases in the looped-out structures. 相似文献
8.
Hairpin polyamides selectively recognize predetermined DNA sequences with affinities comparable to naturally occurring proteins. Internal side-by-side pairs of unsymmetrical aromatic rings within the minor groove of DNA distinguish each of the four Watson-Crick base pairs. In contrast, N-terminal ring pairs exhibit less specificity, with the exception of Im/Py targeting G.C base pairs. In an effort to explore the sequence specificity of new ring pairs, a series of hairpin polyamides containing 3-substituted-thiophene-2-carboxamide residues at the N-terminus was synthesized. An N-terminal 3-methoxy (or 3-chloro) thiophene residue paired opposite Py displayed 6- (and 3-) fold selectivity for T.A relative to A.T base pair, while disfavoring G,C base pairs by >200-fold. Our data suggests shape selective recognition with projection of the 3-thiophene substituent (methoxy or chloro) to the floor of the minor groove. 相似文献
9.
Human Rad51 (hRad51) promoted homology recognition and subsequent strand exchange are the key steps in human homologous recombination mediated repair of DNA double-strand breaks. However, it is still not clear how hRad51 deals with sequence heterology between the two homologous chromosomes in eukaryotic cells, which would lead to mismatched base pairs after strand exchange. Excessive tolerance of sequence heterology may compromise the fidelity of repair of DNA double-strand breaks. In this study, fluorescence resonance energy transfer (FRET) was used to monitor the heterology tolerance of human Rad51 mediated strand exchange reactions, in real time, by introducing either G-T or I-C mismatched base pairs between the two homologous DNA strands. The strand exchange reactions were much more sensitive to G-T than to I-C base pairs. These results imply that the recognition of homology and the tolerance of heterology by hRad51 may depend on the local structural motif adopted by the base pairs participating in strand exchange. AnhRad51 mutant protein (hRad51K133R), deficient in ATP hydrolysis, showed greater heterology tolerance to both types of mismatch base pairing, suggesting that ATPase activity may be important for maintenance of high fidelity homologous recombination DNA repair. 相似文献
10.
Molecular recognition of DNA base pairs by the formamido/pyrrole and formamido/imidazole pairings in stacked polyamides 下载免费PDF全文
Buchmueller KL Staples AM Uthe PB Howard CM Pacheco KA Cox KK Henry JA Bailey SL Horick SM Nguyen B Wilson WD Lee M 《Nucleic acids research》2005,33(3):912-921
Polyamides containing an N-terminal formamido (f) group bind to the minor groove of DNA as staggered, antiparallel dimers in a sequence-specific manner. The formamido group increases the affinity and binding site size, and it promotes the molecules to stack in a staggered fashion thereby pairing itself with either a pyrrole (Py) or an imidazole (Im). There has not been a systematic study on the DNA recognition properties of the f/Py and f/Im terminal pairings. These pairings were analyzed here in the context of f-ImPyPy, f-ImPyIm, f-PyPyPy and f-PyPyIm, which contain the central pairing modes, –ImPy– and –PyPy–. The specificity of these triamides towards symmetrical recognition sites allowed for the f/Py and f/Im terminal pairings to be directly compared by SPR, CD and ΔTM experiments. The f/Py pairing, when placed next to the –ImPy– or –PyPy– central pairings, prefers A/T and T/A base pairs to G/C base pairs, suggesting that f/Py has similar DNA recognition specificity to Py/Py. With –ImPy– central pairings, f/Im prefers C/G base pairs (>10 times) to the other Watson–Crick base pairs; therefore, f/Im behaves like the Py/Im pair. However, the f/Im pairing is not selective for the C/G base pair when placed next to the –PyPy– central pairings. 相似文献
11.
Detection and mapping of mismatched base pairs in DNA molecules by atomic force microscopy 总被引:1,自引:0,他引:1
Attempts were made to apply atomic force microscopy (AFM) imaging to the detection and mapping of the sites of base substitutions in DNA molecules. In essence, DNA fragments to be examined for possible base substitutions were mixed with an equal amount of a corresponding DNA standard and subjected to heat denaturation and subsequent annealing. The reassociated DNA was incubated with MutS protein, a protein that recognizes and binds to mismatched base pairs in duplex DNA. Bound MutS protein molecules were then detected by AFM and their positions along the DNA molecules were determined by calculating the distance from one of the DNA termini, which had been tagged with a biotin–avidin complex. Base substitutions present in DNA molecules >1 kb were effectively detected by this procedure, and the positions determined were in good agreement with the actual mutation sites. This method is quite simple, has virtually no limitations on the size of DNA fragments to be examined and requires only a very small amount of DNA sample. 相似文献
12.
Energetic basis of molecular recognition in a DNA aptamer 总被引:1,自引:0,他引:1
Bishop GR Ren J Polander BC Jeanfreau BD Trent JO Chaires JB 《Biophysical chemistry》2007,126(1-3):165-175
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC-3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T(m)=50.2+/-0.2 degrees C and a folding enthalpy DeltaH(0)(fold)=-49.0+/-2.1 kcal mol(-1). These values agree with values of T(m)=49.6 degrees C and DeltaH(0)(fold)=-51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T(m) of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy DeltaG(0)(bind)=-5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with DeltaH(0)(bind)=-8.7 kcal mol(-1). Combination of enthalpy and free energy produce an unfavorable entropy of -TDeltaS(0)=+3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K(-1) was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures. From the calculated changes in solvent accessible surface areas of these structures a molar heat capacity change of -125 cal mol(-1) K(-1) was calculated, a value in excellent agreement with the experimental value. The thermodynamic signature, along with the coupled CD spectral changes, suggest that the binding of L-argininamide to its DNA aptamer is an induced-fit process in which the binding of the ligand is thermodynamically coupled to a conformational ordering of the nucleic acid. 相似文献
13.
Alternative heterocycles for DNA recognition: a 3-pyrazole/pyrrole pair specifies for G.C base pairs
Synthetic ligands comprising three aromatic amino acids, pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp), specifically recognize predetermined sequences as side-by-side pairs in the minor groove of DNA. To expand the repertoire of aromatic rings that may be utilized for minor groove recognition, three five-membered heterocyclic rings, 3-pyrazolecarboxylic acid (3-Pz), 4-pyrazolecarboxylic acid (4-Pz), and furan-2-carboxylic acid (Fr), were examined at the N-terminus of eight-ring hairpin polyamide ligands. The DNA binding properties of 3-Pz, 4-Pz, and Fr each paired with Py were studied by quantitative DNase I footprinting titrations on a 283 bp DNA restriction fragment containing four 6-bp binding sites 5'-ATNCCTAA-3' (N = G, C, A, or T; 6-bp polyamide binding site is underlined). The pair 3-Pz/Py has increased binding affinity and sequence specificity for G.C bp compared with Im/Py. 相似文献
14.
Nikita A. Kuznetsov Christina Bergonzo Arthur J. Campbell Haoquan Li Grigory V. Mechetin Carlos de?los?Santos Arthur P. Grollman Olga S. Fedorova Dmitry O. Zharkov Carlos Simmerling 《Nucleic acids research》2015,43(1):272-281
Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination. 相似文献
15.
Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein 总被引:1,自引:0,他引:1
Human Rad51 belongs to a ubiquitous family of proteins that enable a single strand to recognize homology in duplex DNA, and thereby to initiate genetic exchanges and DNA repair, but the mechanism of recognition remains unknown. Kinetic analysis by fluorescence resonance energy transfer combined with the study of base substitutions and base mismatches reveals that recognition of homology, helix destabilization, exchange of base pairs, and initiation of strand exchange are integral parts of a rapid, concerted mechanism in which A:T base pairs play a critical role. Exchange of base pairs is essential for recognition of homology, and physical evidence indicates that such an exchange occurs early enough to mediate recognition. 相似文献
16.
Effect of mismatched base pairs on the fate of donor DNA in transformation of Streptococcus pneumoniae 总被引:8,自引:0,他引:8
Summary Investigation of the mechanism that discriminates against mismatched base pairs in transformation of Streptococcus pneumoniae of genotype hex
+ was based on the use of a radioactively labeled cloned fragment of pneumococcal DNA as donor in transformation. The fate of the donor label was followed by lysis of the transformed cells and separation by agarose gel electrophoresis of DNA fragments generated by restriction endonucleases. As a result of Hex action, most of the donor DNA fragment, which was a few kilobases in length, was lost when a mismatched base pair occurred between donor and recipient DNA. This was not observed in hex
- recipient cells. Kinetic studies of mismatch-induced donor DNA loss showed that the process is faster in strain 800, an R6 derivative, than in DP 1601, a strain of different origin. In the latter strain, the amount of donor label that becomes double stranded rises substantially, indicating extensive formation of donorrecipient heteroduplex structures, before falling to the expected level. At 30°C the process is essentially completed 15 min after entry. 相似文献
17.
Side-by-side pairs of three five-membered rings, N-methylpyrrole (Py), N-methylimidazole (Im), and N-methylhydroxy-pyrrole (Hp), have been demonstrated to distinguish each of the four Watson Crick base pairs in the minor groove of DNA. However, not all DNA sequences targeted by these pairing rules achieve affinities and specificities comparable to DNA binding proteins. We have initiated a search for new heterocycles which can expand the sequence repetoire currently available. Two heterocyclic aromatic amino acids. N-methylpyrazole (Pz) and 4-methylthiazole (Th), were incorporated into a single position of an eight-ring polyamide of sequence ImImXPy-gamma-lmPyPyPy-beta-Dp to examine the modulation of affinity and specificity for DNA binding by a Pz/Py pair and or a Th/Py pair. The X/Py pairings Pz/Py and Th/Py were evaluated by quantitative DNase I footprint titrations on a DNA fragment with the four sites 5'-TGGNCA-3' (N=T, A, G, C). The Pz/Py pair binds T.A and A.T with similar affinity to a Py/Py pair but with improved specificity. disfavoring both G.C and C.G by about 100-fold. The Th/Py pair binds poorly to all four Watson Crick base pairs. These results demonstrate that in some instances new heterocyclic aromatic amino acid pairs can be incorporated into imidazole-pyrrole polyamides to mimic the DNA specificity of Py/Py pairs which may be relevant as biological criteria in animal studies become important. 相似文献
18.
Toth JL Price CA Madsen EC Handl HL Hudson SJ Hubbard RB Bowen JP Kiakos K Hartley JA Lee M 《Bioorganic & medicinal chemistry letters》2002,12(16):2245-2248
Conjugates of racemic seco-cyclopropaneindoline-2-benzofurancarboxamide (CI-Bf) and four diamides (ImIm 1, ImPy 2, PyIm 3, and PyPy 4, where Py is pyrrole, and Im is imidazole), linked by a gamma-aminobutyrate group were synthesized. In addition to alkylating at adenine-N3 positions within an A(5) sequence, the imidazole-containing compounds 1 and 2 were found to also alkylate purine-N3 positions within a sequence 3'-GGGGGGA(888)CTGCTC(894)-5'. A model for the binding of hairpin conjugates 1 and 2 with the 3'-GACT-5' sequence is proposed. 相似文献
19.