首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Dalby  A. J. Pereira    LSB. Goldstein 《Genetics》1995,139(2):757-766
We developed a screening approach that utilizes an inverse polymerase chain reaction (PCR) to detect P element insertions in or near previously cloned genes in Drosophila melanogaster. We used this approach in a large scale genetic screen in which P elements were mobilized from sites on the X chromosome to new autosomal locations. Mutagenized flies were combined in pools, and our screening approach was used to generate probes corresponding to the sequences flanking each site of insertion. These probes then were used for hybridization to cloned genomic intervals, allowing individuals carrying insertions in them to be detected. We used the same approach to perform repeated rounds of sib-selection to generate stable insertion lines. We screened 16,100 insert bearing individuals and recovered 11 insertions in five intervals containing genes encoding members of the kinesin superfamily in Drosophila melanogaster. In addition, we recovered an insertion in the region including the Larval Serum Protein-2 gene. Examination by Southern hybridization confirms that the lines we recovered represent genuine insertions in the corresponding genomic intervals. Our data indicates that this approach will be very efficient both for P element mutagenesis of new genomic regions and for detection and recovery of ``local' P element transposition events. In addition, our data constitutes a survey of preferred P element insertion sites in the Drosophila genome and suggests that insertion sites that are mutable at a rate of ~10(-4) are distributed every 40-50 kb.  相似文献   

2.
In animals, V-ATPases are believed to play roles in the plasma membrane, as well as endomembrane. To understand these different functions, it is necessary to adopt a genetic approach in a physiologically tractable model organism. For this purpose, Drosophila melanogaster is ideal, because of the powerful genetics associated with the organism and because of the unusually informative epithelial phenotype provided by the Malpighian tubule. Recently, the first animal "knockouts" of a V-ATPase were described in Drosophila. The resulting phenotypes have general utility for our understanding of V-ATPase function and suggest a screen for novel subunits and associated proteins. Genome project resources have accelerated our knowledge of the V-ATPase gene family size and the new Drosophila genes vhaSFD, vha100-1, vha100-2, vha100-3, vha16-2, vha16-3, vha16-4, vhaPPA1, vhaPPA2, vhaM9.7.1, and vhaM9.7.2 are described. The Drosophila V-ATPase model is thus well-suited to both forward and reverse genetic analysis of this complex multifunctional enzyme.  相似文献   

3.
4.
Genomic deletions of the Drosophila melanogaster Hsp70 genes   总被引:1,自引:0,他引:1  
Gong WJ  Golic KG 《Genetics》2004,168(3):1467-1476
Homologous recombination can produce directed mutations in the genomes of a number of model organisms, including Drosophila melanogaster. One of the most useful applications has been to delete target genes to generate null alleles. In Drosophila, specific gene deletions have not yet been produced by this method. To test whether such deletions could be produced by homologous recombination in D. melanogaster we set out to delete the Hsp70 genes. Six nearly identical copies of this gene, encoding the major heat-shock protein in Drosophila, are found at two separate but closely linked loci. This arrangement has thwarted standard genetic approaches to generate an Hsp70-null fly, making this an ideal test of gene targeting. In this study, ends-out targeting was used to generate specific deletions of all Hsp70 genes, including one deletion that spanned approximately 47 kb. The Hsp70-null flies are viable and fertile. The results show that genomic deletions of varied sizes can be readily generated by homologous recombination in Drosophila.  相似文献   

5.
Recent studies have shown that trehalose plays a protective role in yeast in a variety of stresses, including heat, freezing and thawing, dehydration, hyperosmotic shock, and oxidant injury. Because (a) heat shock and anoxia share mechanisms that allow organisms to survive, (b) Drosophila melanogaster is tolerant to anoxia, and (c) trehalose is present in flies and is metabolically active, we asked whether trehalose can protect against anoxic stress. Here we report on a new role of trehalose in anoxia resistance in Drosophila. We first cloned the gene trehalose-6-phosphate synthase (tps1), which synthesizes trehalose, and examined the effect of tps1 overexpression as well as mutation on the resistance of Drosophila to anoxia. Upon induction of tps1, trehalose increased, and this was associated with increased tolerance to anoxia. Furthermore, in vitro experiments showed that trehalose reduced protein aggregation caused by anoxia. Homozygous tps1 mutant (P-element insertion into the third intron of the gene) leads to lethality at an early larval stage, and excision of the P-element rescues totally the phenotype. We conclude that trehalose contributes to anoxia tolerance in flies; this protection is likely to be due to a reduction of protein aggregation.  相似文献   

6.
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.  相似文献   

7.
Recent advances in our ability to design DNA binding factors with specificity for desired sequences have resulted in a revolution in genetic engineering, enabling directed changes to the genome to be made relatively easily. Traditional techniques for generating genetic mutations in most organisms have relied on selection from large pools of randomly induced mutations for those of particular interest, or time-consuming gene targeting by homologous recombination. Drosophila melanogaster has always been at the forefront of genetic analysis, and application of these new genome editing techniques to this organism will revolutionise our approach to performing analysis of gene function in the future. We discuss the recent techniques that apply the CRISPR/Cas9 system to Drosophila, highlight potential uses for this technology and speculate upon the future of genome engineering in this model organism.  相似文献   

8.
9.
10.
果蝇在肿瘤学研究中的优势及应用前景   总被引:1,自引:0,他引:1  
霍桂桃  吕建军  屈哲  林志  张頔  杨艳伟  李波 《遗传》2014,36(1):30-40
果蝇作为研究人类疾病的模式生物, 与哺乳动物不仅在基本的生物学、生理学和神经系统机能等方面比较相似, 而且果蝇有其作为模式生物的独特优势。近年来的研究表明, 果蝇和人类在肿瘤发生信号通路等方面的保守性很高, 而且果蝇具有很强的遗传学可操作性, 是肿瘤学研究有效的模型之一, 可用于研究人类肿瘤发生、发展、转移等分子机制。文章综述了果蝇在肿瘤学研究中的优势、已建立的用于研究特定癌症的果蝇模型, 并对其在未来肿瘤学的研究方向进行展望, 以期为国内肿瘤学研究和抗肿瘤药物的研发提供参考。  相似文献   

11.
【目的】灵活操控靶基因的表达水平对于研究基因的功能十分重要。Gal4/UAS系统已被广泛应用于调控基因表达,可研究果蝇Drosophila等模式生物复杂的生物学问题。受采用载体的特性及插入位点的影响,Gal4或UAS转基因品系在构建好之后,其调控靶基因的能力基本是确定的。本研究旨在在现有Gal4/UAS系统的基础上,开发一种新的策略,实现在果蝇翅芽中灵活操控wingless(wg)基因的表达水平。【方法】用遗传学手段将黑腹果蝇Drosophila melanogaster品系的UAS-wg和UAS-wg-RNAi转基因重组到同一黑腹果蝇品系中。将该重组黑腹果蝇品系与dpp-Gal4黑腹果蝇品系杂交,同时驱动UAS-wg和UAS-wg-RNAi在果蝇幼虫翅芽中共表达。杂交子代幼虫分别放置在不同的温度(18, 25和30℃)下培养。将幼虫翅芽解剖并进行免疫组化染色,测量染色的荧光强度,分析翅芽中wg的表达水平。【结果】在低温(18℃)下,UAS-wg在基因表达调控中起主要作用,wg表现为超表达,但其超表达的效率可被UAS-wg-RNAi有效地削弱。相反,在高温(30℃)下,UAS-wg-RNAi起主导作用,wg的表达受到抑制。并且通过转换温度,可实现wg在翅芽发育的不同阶段在超表达和抑制之间相互转化,从而灵活地操控wg基因在翅芽中的表达水平。【结论】该方法可以灵活操控果蝇翅芽中wg基因的表达水平,对于调控转基因的表达有重要的意义。  相似文献   

12.
P element-induced gene conversion has been previously used to modify the white gene of Drosophila melanogaster in a directed fashion. The applicability of this approach of gene targeting in Drosophila melanogaster, however, has not been analyzed quantitatively for other genes. We took advantage of the P element-induced forked allele, f(hd), which was used as a target, and we constructed a vector containing a modified forked fragment for converting f(hd). Conversion frequencies were analyzed for this locus as well as for an alternative white allele, w(eh812). Combination of both P element-induced mutant genes allowed the simultaneous analysis of conversion frequencies under identical genetic, developmental, and environmental conditions. This paper demonstrates that gene conversion through P element-induced gap repair can be applied with similar success rates at the forked locus and in the white gene. The average conversion frequency at forked was 0.29%, and that at white was 0.17%. These frequencies indicate that in vivo gene targeting in Drosophila melanogaster should be applicable for other genes in this species at manageable rates. We also confirmed the homolog dependence of reversions at the forked locus, indicating that P elements transpose via a cut-and-paste mechanism. In a different experiment, we attempted conversion with a modified forked allele containing the su(Hw) binding site. Despite an increased sample size, there were no conversion events with this template. One interpretation (under investigation) is that the binding of the su(Hw) product prevents double-strand break repair.  相似文献   

13.
Antagonistic host-parasite interactions can drive rapid adaptive evolution in genes of the immune system, and such arms races may be an important force shaping polymorphism in the genome. The RNA interference pathway gene Argonaute-2 (AGO2) is a key component of antiviral defense in Drosophila, and we have previously shown that genes in this pathway experience unusually high rates of adaptive substitution. Here we study patterns of genetic variation in a 100-kbp region around AGO2 in three different species of Drosophila. Our data suggest that recent independent selective sweeps in AGO2 have reduced genetic variation across a region of more than 50 kbp in Drosophila melanogaster, D. simulans, and D. yakuba, and we estimate that selection has fixed adaptive substitutions in this gene every 30-100 thousand years. The strongest signal of recent selection is evident in D. simulans, where we estimate that the most recent selective sweep involved an allele with a selective advantage of the order of 0.5-1% and occurred roughly 13-60 Kya. To evaluate the potential consequences of the recent substitutions on the structure and function of AGO2, we used fold-recognition and homology-based modeling to derive a structural model for the Drosophila protein, and this suggests that recent substitutions in D. simulans are overrepresented at the protein surface. In summary, our results show that selection by parasites can consistently target the same genes in multiple species, resulting in areas of the genome that have markedly reduced genetic diversity.  相似文献   

14.
Sensitivity to anoxia varies tremendously among phyla and species. Most mammals are exquisitely sensitive to low concentrations of inspired oxygen, while some fish, turtles and crustacea are very resistant. To determine the basis of anoxia tolerance, it would be useful to utilize a model system which can yield mechanistic answers. We studied the fruit fly, Drosophila melanogaster, to determine its anoxia resistance since this organism has been previously studied using a variety of approaches and has proven to be very useful in a number of areas of biology. Flies were exposed to anoxia for periods of 5-240 min, and, after 1-2 min in anoxia, Drosophila lost coordination, fell down, and became motionless. However, they tolerated a complete nitrogen atmosphere for up to 4 h following which they recovered. In addition, a nonlinear relation existed between time spent in anoxia and time to recovery. Extracellular recordings from flight muscles in response to giant fiber stimulation revealed complete recovery of muscle-evoked response, a response that was totally absent during anoxia. Mean O(2) consumption per gram of tissue was substantially reduced in low O(2) concentrations (20% of control). We conclude from these studies that: (1) Drosophila melanogaster is very resistant to anoxia and can be useful in the study of mechanisms of anoxia tolerance; and (2) the profound decline in metabolic rate during periods of low environmental O(2) levels contributes to the survival of Drosophila. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

15.
Insulin is one of the key peptide hormones that regulates growth and metabolism in vertebrates. Evolutionary conservation of many elements of the insulin/IGF signaling network makes it possible to study the basic genetic function of this pathway in lower metazoan models such as Drosophila. Here we report the cloning and characterization of the gene for Drosophila insulin/relaxin-like peptide (DIRLP). The predicted protein structure of DIRLP greatly resembles typical insulin structure and contains features that differentiate it from the Drosophila juvenile hormone, another member of the insulin family. The Dirlp gene is represented as a single copy in the Drosophila melanogaster genome (compared to multiple copies for Drosophila juvenile hormone) and shows evolutionary conservation of genetic structure. The gene was mapped to the Drosophila chromosome 3, region 67D2. In situ hybridization of whole-mount Drosophila embryos with Dirlp antisense RNA probe reveals early embryonic mesodermal/ventral furrow expression pattern, consistent with earlier observation of the insulin protein immunoreactivity in Drosophila embryos. The in situ hybridization pattern was found to be identical to that obtained during immunohistochemistry analysis of the Drosophila embryos using various insulin monoclonal and polyclonal antibodies that do not recognize Drosophila juvenile hormone, supporting the idea that Dirlp is a possible Drosophila insulin ortholog. Identification of the gene for DIRLP provides a new approach for study of the regulatory pathway of the insulin family of peptides.  相似文献   

16.
Hybrid females from Drosophila simulans females X Drosophila melanogaster males die as embryos while hybrid males from the reciprocal cross die as larvae. We have recovered a mutation in melanogaster that rescues the former hybrid females. It was located on the X chromosome at a position close to the centromere, and it was a zygotically acting gene, in contrast with mhr (maternal hybrid rescue) in simulans that rescues the same hybrids maternally. We named it Zhr (Zygotic hybrid rescue). The gene also rescues hybrid females from embryonic lethals in crosses of Drosophila mauritiana females X D. melanogaster males and of Drosophila sechellia females X D. melanogaster males. Independence of the hybrid embryonic lethality and the hybrid larval lethality suggested in a companion study was confirmed by employing two rescue genes, Zhr and Hmr (Hybrid male rescue), in doubly lethal hybrids. A model is proposed to explain the genetic mechanisms of hybrid lethalities as well as the evolutionary pathways.  相似文献   

17.
Substantial insights into basic strategies for embryonic body patterning have been obtained from genetic analyses of Drosophila melanogaster. This knowledge has been used in evolutionary comparisons to ask if genes and functions are conserved. To begin to ask how highly conserved are the mechanisms of mRNA localization, a process crucial to Drosophila body patterning, we have focused on the localization of bcd mRNA to the anterior pole of the embryo. Here we consider two components involved in that process: the exuperantia (exu) gene, required for an early step in localization; and the cis-acting signal that directs bcd mRNA localization. First, we use the cloned D. melanogaster exu gene to identify the exu genes from Drosophila virilis and Drosophila pseudoobscura and to isolate them for comparisons at the structural and functional levels. Surprisingly, D. pseudoobscura has two closely related exu genes, while D. melanogaster and D. virilis have only one each. When expressed in D. melanogaster ovaries, the D. virilis exu gene and one of the D. pseudoobscura exu genes can substitute for the endogenous exu gene in supporting localization of bcd mRNA, demonstrating that function is conserved. Second, we reevaluate the ability of the D. pseudoobscura bcd mRNA localization signal to function in D. melanogaster. In contrast to a previous report, we find that function is retained. Thus, among these Drosophila species there is substantial conservation of components acting in mRNA localization, and presumably the mechanisms underlying this process.  相似文献   

18.
Genomic sequences provide powerful new tools in genetic analysis, making it possible to combine classical genetics with genomics to characterize the genes in a particular chromosome region. These approaches have been applied successfully to the euchromatin, but analysis of the heterochromatin has lagged somewhat behind. We describe a combined genetic and bioinformatics approach to the base of the right arm of the Drosophila melanogaster second chromosome, at the boundary between pericentric heterochromatin and euchromatin. We used resources provided by the genome project to derive a physical map of the region, examine gene density, and estimate the number of potential genes. We also carried out a large-scale genetic screen for lethal mutations in the region. We identified new alleles of the known essential genes and also identified mutations in 21 novel loci. Fourteen complementation groups map proximal to the assembled sequence. We used PCR to map the endpoints of several deficiencies and used the same set of deficiencies to order the essential genes, correlating the genetic and physical map. This allowed us to assign two of the complementation groups to particular "computed/curated genes" (CGs), one of which is Nipped-A, which our evidence suggests encodes Drosophila Tra1/TRRAP.  相似文献   

19.
Fighting by organisms such as mice and Drosophila provides model systems for investigating the genetic basis of aggression. Recent experiments to dissect male aggressive behaviour in Drosophila melanogaster, using gene expression analysis of selected lines followed by mutant analysis, have identified new candidate genes associated with male aggression, including one strong candidate that encodes a cytochrome P450 enzyme. Here, we describe the study of aggressive behaviour in flies and explore the possibility that cytochrome P450 is involved in aggression.  相似文献   

20.
Drosophila melanogaster is widely considered to be an attractive model organism for studying the functions of the carbohydrate moieties of glycoconjugates produced by higher eukaryotes. However, the pathways of glycoconjugate biosynthesis are not as well defined in insects as they are in higher eukaryotes. One way to address this problem is to identify genes in the Drosophila genome that might encode relevant functions, express them, and determine the functions of the gene products by direct biochemical assays. In this study, we used this approach to identify a putative Drosophila beta4-galactosyltransferase gene and determine the enzymatic activity of its product. Biochemical assays demonstrated that this gene product could transfer galactose from UDP-galactose to a beta-xylosyl acceptor, but not to other acceptors in vitro. The apparent K(m) values for the donor and acceptor substrates indicated that this gene product is a functional galactosyltransferase. Additional assays showed that the enzyme is activated by manganese, has a slightly acidic pH optimum, and is localized in the insect cell Golgi apparatus. These results showed that Drosophila encodes an ortholog of human beta4-galactosyltransferase-VII, also known as galactosyltransferase I, which participates in proteoglycan biosynthesis by transferring the first galactose to xylose in the linkage tetrasaccharide of glycosaminoglycan side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号