首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stands of groundnut were grown in computer-controlled glasshouseson water stored in an undisturbed soil profile. The maximumsaturation vapour pressure deficit (D) of the air was either1.0, 2.0, 2.5, or 3.0 kPa, and the mean air temperature was27 °C. Transpiration (E), determined from the soil water balance, wasstrongly dependent on D, because D influenced both the fractionof incident solar radiation intercepted by foliage (f) and thetranspiration rate per unit f (E/f). When D exceeded 2 kPa,canopy expansion was restricted and f reduced during early growth,but differences in f diminished as the canopies closed. E/fincreased with D, implying that any restriction of transpirationthrough stomatal closure at large D was outweighted by a steeperhumidity gradient from leaf to air. In all treatments E/f decreased as the soil profile dried. Saturationdeficit per se had little influence on the proportional reductionin E/f with time, even though soil water deficit was considerablygreater at large D. This lack of response occurred because plantscompensated for the greater evaporative demand by extractinglarger amounts of water from deep in the profile. Groundnut, Arachis hypogaea L., humidity, rooting depth, transpiration  相似文献   

2.
The rate/temperature relation of several developmental processesin groundnut was examined in a suite of temperature-controlledglasshouses maintained at mean air temperatures of 19, 22, 25,28 and 31 °C. The sensitivity of the various processes tosoil water deficit was also examined. When the relation between rate and temperature was linear, measurementswere analysed in terms of thermal time (°Cd) and an extrapolatedbase temperature (Tb) at which the rate was zero. Tb was conservative(10 °C) for leaf appearance, branching, flowering, peggingand podding. A higher value of Tb for seedling emergence (16°C) was probably an artifact caused by soil pathogens. Leafappearance and branching were more sensitive to soil water deficitthan the other processes examined. Key words: Temperature, Soil water deficit, Development, Groundnut  相似文献   

3.
A timing-of-irrigation experiment was conducted in controlled-environmentglasshouses, in which a finite quantity of water was appliedto four stands of groundnut (Arachis hypogaea L.) at differentstages of the growing season. Irrigation schedules were broadlydivided into two periods; sowing to pod initiation and pod initiationto final harvest. Within these periods two levels of soil moisturedeficit were imposed by withholding or applying limited amountsof irrigation at regular intervals. Shoot dry matter yields were hardly affected but pod yieldswere more than 4-fold lower in early- than in late-irrigatedstands. Thermal time was used to separate the effects of temperatureand water stress on developmental processes. The degree-dayrequirement for peg initiation was similar in all treatmentsbut late-irrigation delayed pod development by about 200 °Cd.The effect of timing of irrigation on pod yield operated mainlythrough its influence on the duration of pod production, whichwas closely linked to the rate and duration of canopy expansionlate in the season. The insensitivity of pod yield to earlymoisture deficits reflected the extreme plasticity of growthand development in groundnut, since most processes resumed ratessimilar to the pre-stress levels in early-irrigated stands oncestress was released. Key words: Groundnut, irrigation, growth, development  相似文献   

4.
Experiments were carried out to investigate the influence ofatmospheric saturation deficit on the stomatal conductancesof millet and groundnut plants grown in undisturbed soil incontrolled environment glasshouses. Environmental conditionsduring growth were maintained close to those experienced inthe semi-arid tropics. The results demonstrated that the stomatal conductances of well-wateredplants of both species were affected strongly by changes insaturation deficit. The response was stronger at higher irradianceswhen variations in saturation deficit between 1.5 and 3.0 kPacaused 3–4-fold changes in leaf conductance. However,the stomatal response was greatly reduced or absent in unirrigatedplants in which stomatal conductances were reduced. Reduction of the transpiring leaf area by covering some of theleaves increased the leaf conductances of the remaining leavesand partially restored the stomatal response to saturation deficitin unirrigated plants. Leaf conductance was sensitive to thetranspiring area per plant and declined as the transpiring areaincreased. However, the reduction in mean leaf conductance wasinsufficient to prevent an increase in canopy conductance owingto the increased transpiring area: The results are compared to earlier field data for millet, andthe possible origin of the stomatal response is discussed.  相似文献   

5.
Stands of groundnut were grown in four glasshouses with themaximum saturation deficit (D) of the air limited to 1.0, 2.0,2.5 or 3.0 kPa. The soil was near field capacity when plantsemerged and no water was applied thereafter. In a fifth glasshouse,a stand was grown at low D on soil irrigated to field capacityevery few days. Developmental processes such as timing of flowering, peggingand pod formation were unaffected by D, but the numbers of branches,flowers and pegs were reduced in the drier treatments. Measurementsduring the first 30 d showed that in the drier treatments leafgrowth was reduced, and the partitioning of dry matter intoroots was enhanced. In the unirrigated stands, dry matter production in shoots wasreduced by 40 per cent as the maximum D increased from 1.0 to3.0 kPa. Growth was affected through reductions both in leafarea (and therefore light interception) and in the productivityper unit of light intercepted. These responses to D and soilwater were linked to changes in bulk water potential of leaves. Productivity per unit of water transpired (q) decreased withincreasing D. The product of q and the mean daytime value ofthe difference in vapour pressure between leaf and air was moreconservative than q, and ranged from 3.1 to 5.6 g kPa kg–1. Groundnut, Arachis hypogaea L., saturation deficit, growth, development, light interception, water use efficiency  相似文献   

6.
Multiple shoots in Arachis hypogaea L. could be induced from the de-embryonated cotyledons (DC), embryo-axes (EA) and mature whole seeds (MWS) in MS medium supplemented with different levels of benzylaminopurine (BAP). DC was the most suitable explant with 57.9 % induction and more than 40 shoots per explant in 31.6 % of cases. Though EA and MWS had high percent induction at or above 30 mg dm–3 BAP, only 10 – 14 shoots per explant were observed. In DC, multiple shoots were confined to the proximal end and in EA they originated from the axillary bud region. Histological studies on DC confirmed the origin of shoots from the region of attachment with the embryo. Shoots could be rooted in MS medium containing 2 g dm–3 charcoal and 200 mg dm–3 casein hydrolysate. Sixty percent of the rooted plantlets could be established in the field.  相似文献   

7.
Phenotypic plasticity in morphological, anatomical and physiological traits of peanut (Arachis hypogaea L.) leaves was tested at four different concentrations of Cd, Cu and Zn under greenhouse conditions. Among 18 characteristics tested, nine were found to be the most sensitive and demonstrate the greatest phenotypic plasticity. These were: the leaf area (LA), the leaf mass per area (LMA), chlorophyll a concentration (Chl a), chlorophyll b concentration (Chl b), total chlorophyll concentration (Chl t), the effective quantum yield of photosystem II (ΦPS II), stomatal density of upper epidermis (SDU), palisade thickness (PT), and palisade to spongy thickness ratio (P/S). The plasticity of chlorophyll concentration and fluorescence parameters may be maladaptive and reflects metal toxicity to leaves, whereas the anatomical plasticity is adaptive, indicative of a tradeoff between the physiological and anatomic plasticity. The anatomical plasticity resulted in a xerophyte feature of leaves (i.e. small leaflets, thick lamina, upper epidermis, palisade mesophyll, as well as abundant and small stomata), which enhanced the capacity to resist drought caused by heavy metals via a decrease in root growth.  相似文献   

8.
Summary An 8 × 8 full diallel experiment based on 4 bunch plus 4 spreading types of groundnut (Arachis hypogaea L.) was conducted over three environments. For both number of pods and pod yield, additive, nonadditive and reciprocal cross effects were detected and these were also influenced by changes in environments. For number of pods additive genetic variance was predominant whereas it was approximately equal to non-additive genetic variance for pod yield. Graphical analysis revealed the presence of strong non-allelic interaction for number of pods whereas for pod yield absence of dominance and/or presence of non-allelic interaction was evident.Part of Ph.D. Thesis of the first author  相似文献   

9.
光对花生不同叶龄的磷酸丙糖、3-磷酸甘油醛脱氢酶、丙酮酸激酶和丙酮酸含量的影响不同。成长叶片光合速率大于暗呼吸,在光下,TP增高,细胞质G3PDh活性受抑制,PK活性和Pyr含量下降;DCMU处理则消除光的影响,TP下降,细胞质G3PDh和PK活性升高。花生成长叶在光下糖酵解(EMP)途径受抑制,抑制位点是G3PDh和PK。幼叶光合微弱,呼吸作用强,TP和Pyr及细胞质酶活均不受光、暗条件和DCMU处理影响,其EMP途径和在暗中同样速率运转。老叶光合和暗呼吸均较弱,TP和两种酶活不论在光和暗中均无差异,Pyr少,EMP途径运转也慢。  相似文献   

10.
Greenhouse nutrient solution studies demonstrated that diniconazole will decrease peanut (Arachis hypogaea L.) shoot growth when either root or shoot applied. Root growth and development were decreased by root and, to a lesser extent, by shoot uptake of diniconazole. Diniconazole is apparently xylem translocated, but not phloem translocated. Concentrations of 200 ppb ES isomer of diniconazole in nutrient solution (root uptake) increased specific leaf weight and starch deposits in the leaf. Field applications of 193 g ES isomer ha–1 of diniconazole reduced main stem height by 33%, leaf area index by 16%, and total vegetative dry weight by 19%, but had no effect on average leaf size. Decreased germination of seeds from plants treated with 1435 g ha–1 diaminozide was associated with increased seed dormancy. Seed dormancy was counteracted by either ethylene gas or storage for 150 days after harvest. Soil applications of diniconazole were more effective than foliar appliations in reducing vine growth. Diniconazole's ER isomer is a broad spectrum fungicide that reduced damage (when compared to the control) bySclerotium rolfsii andRhizoctonia solani. The reduced damage by these diseases was thought to be the primary reason for the significant pod yield increase (when compared to the control) observed with the diniconazole treatments. In drought-stressed plots, populations of the two-spotted spider mite (Tetranychus urticae) were increased by diniconazole.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee by the University of Georgia or the U.S. Department of Agriculture and does not imply UGA or USDA approval to the exclusion of other products or vendors that also may be suitable.  相似文献   

11.
Five groundnut cultivars were grown in transparent tubes of pasteurized loam compost in growth-chamber conditions. Weekly tracings were made of all the roots visible through the walls of the tubes. White roots were assessed as living, and brown or decayed roots as dead; this correlated with microscopical assessments of root viability based on cytoplasmic staining with neutral red followed by plasmolysis.For all five cultivars, root laterals began to die 3–4 weeks after plants were sown. Death of root laterals progressed down the soil profile with time, while new roots were produced successively deeper from the extending taproot. The half-life of individual roots was calculated as 3.7–4.4 weeks for all cultivars, based on assessments of the roots that died up to plant maturity (14–20 weeks, depending on cultivar). At maturity, 73–83% of the cumulative length of root systems had died. The onset and rate of root death were not related to onset of flowering or pod-filling; instead, the peak times of root death at different distances down the root system were related to earlier (3–5 week) peak times of root production in those regions. The net result of root turnover was that, despite continued new root production, the maximum length of living (white) roots of each cultivar was recorded at 2–4 weeks after sowing. Death of the earliest formed root laterals was also observed in the first five weeks after sowing of groundnut in an experimental field plot in Malawi. Progressive root turnover is considered to be a normal feature of groundnut, perhaps representing an energy-economy strategy.  相似文献   

12.
Summary Studies of incubation experiments showed that the phosphorus turnover under aerobic decomposition in soil starts with a non-biological process, which is rapid and probably due to chemical fixation. The present study allowed a distinction to be made between chemical fixation and biological immobilisation of added phosphorus with special reference to the effects of addition of energy material in the process of biological turnover. Invariably, both glucose and cellulose additions resulted in an increase in phosphorus immobilisation. Comparatively, cellulose acted slowly on phosphorus turnover, with the prospect of more immobilisation in long term experiments. re]19730416  相似文献   

13.
Zharare  G. E.  Asher  C. J.  Blamey  F. P. C.  Dart  P. J. 《Plant and Soil》1993,155(1):355-358
Normal pods (containing seed) of groundnut (Arachis hypogaea L.) (cv. TMV-2) were successfully raised in darkened, aerated, nutrient solution, but not in the light. The onset of podding was evident 7 to 8 d after gynophores were submerged in the darkened nutrient solution. An examination of pods and submerged portions of gynophore surfaces by scanning electron microscopy showed the presence of two distinctly different protuberances: unicellular root-hair-like structures that first developed from epidermal cells of the gynophores and developing pods; and branched septate hairs that developed later from cells below the epidermal layer. The septate hairs became visible only after the epidermal and associated unicellular structures had been shed by the expanding gynophore and pods. Omission of Mn and Mg from the podding environment increased pod and seed weight, whilst omission of Zn reduced pod and seed weight.  相似文献   

14.
花生镉污染研究进展   总被引:8,自引:1,他引:8  
花生既是世界主要的油料作物,又是重要的植物蛋白来源和食品加工原料.随着花生直接食用和食品加工的不断增加,国际上对花生籽粒Cd含量问题越来越关注.我国是世界上重要的花生生产国和出口国.近年来,花生Cd含量偏高已经成为制约我国出口贸易的重要因素.本文从花生籽粒Cd富集能力、花生Cd含量的种内差异、籽粒中Cd的分布规律、影响花生籽粒Cd积累的机制和降低花生籽粒Cd含量技术等方面,对花生Cd污染研究的现状与问题进行了论述.指出在花生cd污染控制方面有2种策略可以考虑,一是降低花生对土壤Cd的吸收;二是控制Cd向籽粒的迁移富集.为此需要从3个方面加强对花生籽粒Cd积累机制的研究,即花生根系活性特征参数及其与籽粒Cd积累的关系;花生果荚Cd吸收机制及其对籽粒Cd含量的贡献;花生植株体内Cd迁移机制及其与籽粒Cd含量的关系.  相似文献   

15.
Summary RFLP variability was studied in eight U.S. peanut cultivars, representing the four market types, and in 14 wild Arachis species accessions, using random genomic clones from a PstI library. Very low levels of RFLP variability were found among the allotetraploids, which included the U.S. cultivars and Arachis monticola, a wild species. The diploid wild species were very diverse, however. RFLP patterns of the allotetraploids were more complex than the diploids, and the two constituent genomes could usually be distinguished. On the basis of RFLP band sharing, A. ipaensis, A. duranensis, and A. spegazzinii appeared most closely related to the diploid progenitor species of the allotetraploids. A dendrogram of relationships among the diploid wild species was constructed based on band sharing.  相似文献   

16.
Somatic embryos were induced from immature cotyledons and immature embryonal axis ofArachis hypogaea L. on L-6 basal medium supplemented with NAA, picloram or 2,4-D at 5–50 mg 1-1. Immature embryonal axis produced a higher number of somatic embryos in comparison with immature cotyledons. The highest number of responding cultures was produced on medium supplemented with NAA (50 mg 1-1), while the highest average number of somatic embryos per culture was produced on medium with 2,4-D (10 or 20 mg 1-1) and picloram (30 mg 1-1) from cotyledons. The somatic embryos developed into plants on basal medium supplemented with activated charcoal and about 100 plants were successfully transferred to the field. Acknowledgement: The authors wish to thank Nuclear Agriculture Division, BARC for supplyingA. hypogaea seeds and Mr. R.M. Mudliar for photography.  相似文献   

17.
18.
The effect of brassinolide, 24-epibrassinolide and 28-homobrassinolide on nodulation and nitrogenase activity of groundnut was studied. The tested brassinosteroids substantially increased both nodulation and nitrogenase activity.  相似文献   

19.
Radiation-induced mutants of groundnut cv. Spanish Improved showing distinct morphological differences and the parent were screened for RAPD variability. The analysis revealed characteristic band differences among the 12 mutants and the parent. The polymorphic RAPD bands were dominant in the F1 and segregated in a Mendelian fashion in the F2. The RAPD technique brought out greater genome variability than RFLP.  相似文献   

20.
Transgenic peanut plants were produced using Agrobacterium mediated gene transfer. Primary leaf explants of peanut were co-cultivated with Agrobacterium tumefaciens LBA 4404 harbouring the binary plasmid pBI 121 (conferring -glucuronidase activity and resistance to kanamycin) and cultured on regeneration medium supplemented with kanamycin to select putatively transformed shoots. They were rooted and plants were transferred to soil. Stable integration and expression of the transgenes were confirmed by NPT II assay, Southern blot hybridization and GUS assay.Abbreviations BA 6-benzyladenine - GUS -glucuronidase - IAA indole-3-acetic acid - NAA -naphthaleneacetic acid - NOS nopaline synthase - NPT II neomycin phosphotransferase II - SDS Lauryl sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号