首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of dilute solutions of octaethylporphyrin and its iron (II) and iron (III) complexes with methyl, 2-cyanopropyl, t-butoxy, and benzoyloxy radicals are described. The results are summarized: (i) The reactivity of the porphyrin and its high-spin iron (II) and iron (III) complexes toward alkyl and t-butoxy radicals stands in the order: FeII > FeIII ? free porphyrin. For benzoyloxy radicals the order is FeII > Porp > FeIII. (ii) The exclusive path of reaction of high-spin iron (II) porphyrin with radicals is the rapid reduction of the radical and generation of an iron (III) porphyrin. The dominant path of reaction of high-spin iron (III) porphyrin with alkyl and (presumably) t-butoxy radicals is a rapid axial inner sphere reduction of the porphyrin. An axial ligand of iron is transferred to the radical. (iv) The reaction of benzoyloxy radicals with high or low-spin iron (III) porphyrins occurs primarily at the meso position. With the low-spin dipyridyl complex in pyridine the attendant reduction to iron (II) can be observed spectrally. Methyl radicals also reduce this complex by adding to the meso position. (v) The reaction of a radical with either an iron (II) or an iron (III) porphyrin results in the generation of the other valence state of iron and consequently oxidation and reduction products emanating from both iron species are obtained. (vi) No evidence for an iron (IV) is intermediate is apparent. (vii) Iron (II) porphyrins in solvents that impart either spin state are easily oxidized by diacyl peroxides. The occurrence of both axial and peripheral redox reactions with the iron complexes supports an underlying premise of a recent theory of hemeprotein reactivity. The relevance of the work to bioelectron transfer and heme catabolism is noted.  相似文献   

2.
The hydrolytic activity of the 1,3,5-triaminocyclohexane derivatives TACH, TACI and TMCA complexed to Zn(II) and Cu(II) towards a model phosphoric ester and plasmid DNA has been evaluated by means of spectroscopic and gel-electrophoresis techniques. At conditions close to physiological, a prominent cleavage effect mediated by the nature of the ligand and metal ion was generally observed. TACI complexes are the most active in relaxing supercoiled DNA, the effect being explained by the affinity of the hydroxylated ligand for the nucleic acid. As indicated by the dependence of cleavage efficiency upon pH, Zn(II)-complexes act by a purely hydrolytic mechanism. In the case of Cu(II)-complexes, although hydrolysis should be prominent, involvement of an oxidative pathway cannot be completely ruled out.  相似文献   

3.
By exploiting the peculiar reactivity of [Rh2(μ-O2CBut)4(H2O)2] (1) the examples of dinuclear rhodium(II) carboxylates containing N-donor axial ligands (2, 3) [Rh2(μ-O2CBut)4L2] [where L = benzonitrile (2), 3,5-di-tert-butyl-4-hydroxybenzonitrile (3)] were synthesized and characterized by elemental analysis, IR, multinuclear NMR spectroscopy, MALDI-TOF mass spectrometry. It was found by X-ray diffraction that pairs of 3 in crystals are associated through H atoms of phenol groups to produce a dimer of dimers. The chemical oxidation of dirhodium complexes with 2,6-di-tert-butyl-4-cyanоphenol pendants studied by means of ESR method in solutions leads to the formation of phenoxyl radicals 3′ in dirhodium system. The ESR data show the interaction of the unpaired electron with ligand nuclei (1H, 14N) and 103Rh. The stability of radical complexes with phenoxyl fragments in axial position is influenced by the temperature. The enthalpy of the 3′ decomposition followed by the formation of cyanophenoxyl radical as 20 ± 1 kJ/mol was estimated. Redox transformations in dirhodium system including both metal and axial ligands were investigated by electrochemistry. CV experiments confirm the assumption of the metal oxidation (RhII→RhIII) as the first step following by the oxidation of the ligand.  相似文献   

4.
A series of ternary copper(II) complexes have been derived using levofloxacin and five phenanthroline derivatives. Complexes were characterized using infrared spectroscopy, Thermogravimetric (TG)-analysis, fast atom bombardment mass spectroscopy and reflectance spectra. Synthesized complexes exhibit the only d-d band at ~ 666?nm points toward a distorted square pyramidal geometry at metal centre with one unpaired electron responsible for paramagnetic behaviour of whole moiety. Binding behaviour of the complexes toward Herring Sperm DNA were determined using ultraviolet-Vis (UV-Vis) absorption titration and viscometric titration experiment, where as the cleavage efficacy of the complexes toward pUC19 DNA was determined by electrophoresis in presence of ethidium bromide. Complexes exhibit superoxide dismutase–like activity with their IC50 values ranging from 0.7917 to 1.7432 µM.  相似文献   

5.
Abstract

The hydrolytic activity of the 1,3,5-triaminocycloxexane derivatives TACH, TACI and TMCA complexed to Zn(II) and Cu(II) towards a model phosphoric ester and plasmid DNA has been evaluated by means of spectroscopic and gel-electrophoresis techniques. At conditions close to physiological, a prominent cleavage effect mediated by the nature of the ligand and metal ion was generally observed. TACI complexes are the most active in relaxing supercoiled DNA, the effect being explained by the affinity of the hydroxylated ligand for the nucleic acid. As indicated by the dependence of cleavage efficiency upon pH, Zn(II)-complexes act by a purely hydrolytic mechanism. In the case of Cu(II)-complexes, although hydrolysis should be prominent, involvement of an oxidative pathway cannot be completely ruled out.  相似文献   

6.
From aerial parts of Austroeupatorium inulifolium was obtained austroeupatol (1). The treatment of 1 with IBX generated the ketone 2 and keto-aldehyde 3. Due to the structural features of 1, the hydroxy group corresponding to the primary alcohol (at C-19) is less reactive than the oxymethine hydroxy groups of the structure. The oxidative cleavage of 1 produced the hemiacetal 4, since this reaction is quantitative and only this compound was detected, was proposed a reaction mechanism that involves the formation of a transition state that explain the generation of 4. The bactericidal activity of these oxidation derivatives was evaluated against four (4) bacterial strains [two Gram-positive (+) and two Gram-negative (-)]: Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa.  相似文献   

7.
Iron chelation therapy was initially designed to alleviate the toxic effects of excess iron evident in iron-overload diseases. However, some iron chelator-metal complexes have also gained interest due to their high redox activity and toxicological properties that have potential for cancer chemotherapy. This communication addresses the conflicting results published recently on the ability of the iron chelator, Dp44mT, to induce hydroxyl radical formation upon complexation with iron (B.B. Hasinoff and D. Patel, J Inorg. Biochem.103 (2009), 1093-1101). This previous study used EPR spin-trapping to show that Dp44mT-iron complexes were not able to generate hydroxyl radicals. Here, we demonstrate the opposite by using the same technique under very similar conditions to show the Dp44mT-iron complex is indeed redox-active and induces hydroxyl radical formation. This was studied directly in an iron(II)/H2O2 reaction system or using a reducing iron(III)/ascorbate system implementing several different buffers at pH 7.4. The demonstration by EPR that the Dp44mT-iron complex is redox-active confirms our previous studies using cyclic voltammetry, ascorbate oxidation, benzoate hydroxylation and a plasmid DNA strand-break assay. We discuss the relevance of the redox activity to the biological effects of Dp44mT.  相似文献   

8.
Addition of 3,6-di-tert-butyl-o-benzoquinone (3,6-DBBQ) to SnCl2 in THF leads to the oxidation of Sn(II) to Sn(IV) with formation of catecholate complex (3,6-DBCat)SnCl2 · 2THF (1), where 3,6-DBCat is 3,6-di-tert-butyl-catecholate dianion. The reaction of 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzoquinone (IBQ-Pri) also proceeds on the oxidative-addition mechanism yielding bis-iminosemiquinonato species (ISQ-Pri)2SnCl2(2), where ISQ-Pri is anion-radical 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzosemiquinolate. The complexes have been characterized by IR, X-band EPR, 1H NMR (for 1) spectroscopy and magnetochemistry (for 2). X-ray analysis data show the distorted octahedral environment of tin(IV) for both complexes. Complex 1 is diamagnetic (ground state S = 0), while 2 has triplet ground state (S = 1, biradical). Catecholate complex 1 is able to be a spin trap for different organic radicals.  相似文献   

9.
The spin trapping ability of the nitrones 2,4-disulphophenyl-N-tert-butyl nitrone (NXY-059), 2-sulphophenyl-N-tert-butyl nitrone (S-PBN) and α-phenyl-N-tert-butyl nitrone (PBN) for both hydroxyl and methanol radicals was investigated using electron paramagnetic resonance (EPR) spectroscopy. The radicals of interest were generated in situ in the spectrometer under constant flow conditions in the presence of each nitrone. The spin adducts formed were detected by EPR spectroscopy. This approach allowed for quantitative comparison of the EPR spectra of the spin adducts of each nitrone. The results obtained showed that NXY-059 trapped a greater number of hydroxyl and methanol radicals than the other two nitrones, under the conditions studied.  相似文献   

10.
The nitrones α-phenyl-N-tert-butyl nitrone (PBN), sodium 2-sulfophenyl-N-tert-butyl nitrone (S-PBN) and disodium 2,4-disulfophenyl-N-tert-butyl nitrone (NXY-059) are neuroprotective in a variety of rodent models. The objective of the current studies was to compare the ability of PBN, S-PBN, and NXY-059 to form radical adducts and to prevent salicylate oxidation in an aqueous system. For the electron spin resonance (ESR) studies, hydroxyl radicals were generated with ultraviolet (UV) light and hydrogen peroxide. Secondary radicals were then produced by the addition of methanol, ethanol, isopropanol, dimethylsulfoxide, tetrahydrofuran or 1,4-dioxane. In addition, competition spin trapping studies were performed using PBN-α-13C and either S-PBN or NXY-059. In the salicylate studies, PBN, S-PBN and NXY-059 were compared to a variety of other antioxidants and reference compounds (cysteine, glutathione, ascorbate, uric acid, Tempo, Trolox, and Tirilizad) for their ability to prevent 2,3- and 2,5-dihydroxybenzoic acid formation induced by hydroxyl radical generating systems. All 3 nitrones trapped carbon- and oxygen-centered radicals to produce ESR-detectable radical adducts. Each nitrone also prevented salicylate oxidation, with PBN being the most effective. The ability of these 3 nitrones to prevent salicylate oxidation resembled that of most of the other compounds tested.  相似文献   

11.
Myeloperoxidase (MPO) released by activated neutrophils can initiate and promote carcinogenesis. MPO produces hypochlorous acid (HOCl) that oxidizes the genomic DNA in inflammatory cells as well as in surrounding epithelial cells. DNA-centered radicals are early intermediates formed during DNA oxidation. Once formed, DNA-centered radicals decay by mechanisms that are not completely understood, producing a number of oxidation products that are studied as markers of DNA oxidation. In this study we employed the 5,5-dimethyl-1-pyrroline N-oxide-based immuno-spin trapping technique to investigate the MPO-triggered formation of DNA-centered radicals in inflammatory and epithelial cells and to test whether resveratrol blocks HOCl-induced DNA-centered radical formation in these cells. We found that HOCl added exogenously or generated intracellularly by MPO that has been taken up by the cell or by MPO newly synthesized produces DNA-centered radicals inside cells. We also found that resveratrol passed across cell membranes and scavenged HOCl before it reacted with the genomic DNA, thus blocking DNA-centered radical formation. Taken together our results indicate that the formation of DNA-centered radicals by intracellular MPO may be a useful point of therapeutic intervention in inflammation-induced carcinogenesis.  相似文献   

12.
A series of hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(B)L n ] (n = 1–4; B = PPh3, AsPh3 or Py) have been synthesized by reacting dibasic quadridentate Schiff base ligands H2L n (n = 1–4) with starting complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py). The synthesized complexes were characterized using elemental and various spectral studies including UV–Vis, FT-IR, NMR (1H, 13C and 31P) and mass spectroscopy. An octahedral geometry was tentatively proposed for all the complexes based on the spectral data obtained. The experiments on antioxidant activity showed that the ruthenium(II) S-methylisothiosemicarbazone Schiff base complexes exhibited good scavenging activity against various free radicals (DPPH, OH and NO). The in vitro cytotoxicity of these complexes has been evaluated by MTT assay. The results demonstrate that the complexes have good anticancer activities against selected cancer cell line, human breast cancer cell line (MCF-7) and human skin carcinoma cell line (A431). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA.  相似文献   

13.
《BBA》1986,849(3):316-324
The formation and decay of antenna-excited states and the primary charge separation in membranes of the green photosynthetic bacterium Chloroflexus aurantiacus were studied by means of picosecond absorbance difference spectroscopy. After chemical oxidation of the primary electron donor, a 35 ps excitation pulse at 532 nm produced singlet- and triplet-excited states of carotenoid and of bacteriochlorophyll a. Excitation of bacteriochlorophyll a caused a bleaching of its Qy absorption band and induced a blue shift of several neighboring bacteriochlorophyll molecules. The singlet-excited state decayed biphasically with lifetimes of about 200 ps and 1.2 ns. A decrease in the lifetime at increasing flash intensity was attributed to singlet-singlet annihilation. In the presence of active reaction centers also the primary-charge separation and secondary electron transfer were observed. The charge separation consisted of the transfer of an electron from the primary donor, P-865, to the primary-acceptor complex of bacteriopheophytin a and bacteriochlorophyll a. Electron transfer to a secondary acceptor occurred with a time constant of 400 ± 50 ps, which is about 30% longer than had been observed with isolated reaction centers (Kirmaier, C., Holten, D., Mancino, L.J. and Blankenship, R.E. (1984) Biochim. Biophys. Acta 765, 138–146). When this secondary acceptor was prereduced chemically, the lifetime of the primary radical pair increased to 10 ns or more.  相似文献   

14.
Radicals generated by the peroxidase catalyzed oxidation of a wide variety of substrates oxidize GSH, NADH, or arachidonate with accompanying oxygen activation. Substrates studied include carcinogens, drugs, or xenobiotics. The effectiveness of the various radicals is partly related to their one-electron oxidation potential. High redox potential radicals were particularly effective at oxidizing these biomolecules. Low redox potential radicals did not react with GSH, NADH, or arachidonate, but can directly activate oxygen to form hydroxyl radicals or undergo scission to carbon radicals. The hydroxyl and carbon radicals have a high redox potential and readily oxidize biomolecules. DNA strand breakage also occurs with some high redox potential radicals, but DNA did not react with low redox potential radicals. The extensive binding of xenobiotics to DNA in the peroxidase system was attributed to noncovalent binding by polymeric products or covalent binding by the two electron oxidation product (formed by radical dismutation or oxidation). The latter can cause alkali labile DNA strand breaks. GSH conjugate formation was also attributed to the two electron oxidation product. Radicals have been trapped in intact cells and oxygen activation or lipid peroxidation has been demonstrated but it is still not clear whether the associated GSH oxidation, DNA strand breakage and cytotoxicity is the result of direct action by radicals. Indirect enzymic mechanisms for free radical mediated DNA strand breakage and cytotoxicity are discussed.  相似文献   

15.
An expedient and eco-friendly synthesis of 1-aryl/heteroaryl-[1,2,4]-triazolo[4,3-a]quinoxalin-4(5H)-ones (4) has been accomplished via iodobenzene diacetate mediated oxidative intramolecular cyclization of 3-(2-(aryl/heteroarylidene)hydrazinyl)-quinoxalin-2(1H)-ones (3). Ten synthesized compounds 3 and 4 (10–40 μg) on irradiation with UV light at λmax 312 nm could lead to cleavage of supercoiled pMaxGFP DNA (Form I) into the relaxed DNA (Form II) without any additive. Further, DNA cleaving ability of triazoles was quantitatively evaluated and was found to be dependent on its structure, concentration, and strictly on photoirradiation time. Mechanistic investigations using several additives as potential inhibitors/activator revealed that the DNA photocleavage reaction involves Type-I pathway leading to formation of superoxide anion radicals (O2) as the major reactive oxygen species responsible for photocleavage process.  相似文献   

16.
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation.  相似文献   

17.
Platinum(IV) [Pt(IV)] complex, satraplatin, is currently in clinical trials for the treatment of various cancers. As a key step of the anti-cancer effect exertion, satraplatin is supposed to be reduced by endogenous reductants to platinum(II) [Pt(II)] complex. In this study, we investigated the interaction of DNA, Pt(IV), and the endogenous reductants such as ascorbic acid (AsA) and glutathione (GSH). As a model Pt(IV) compound, cis-diammine-tetrachloro-Pt(IV) [cis-Pt(IV)], which is a prodrug of cisplatin [cis-diammine-dichloro-Pt(II), cis-Pt(II)], was incubated with calf thymus DNA in the presence of AsA or GSH. In the presence of AsA, cis-Pt(IV) induced oxidative DNA damage. Hydroxyl radical scavengers suppressed the AsA-associated oxidative damage, thereby suggesting that hydroxyl radicals are involved in the DNA oxidation. cis-Pt(II)-like CD spectral change and crosslink formation in calf thymus DNA were also observed during this DNA oxidation, suggesting cis-Pt(IV) reduction by AsA and DNA conformational change induced by the newly formed cis-Pt(II) binding to DNA. GSH did not induce oxidative DNA damage likely due to its own hydroxyl radical scavenging ability. Further, GSH suppressed the Pt(II)-mediated DNA conformational change and crosslink formation, suggesting that GSH sequesters the cis-Pt(II) away from DNA by GSH-cis-Pt(II) complex formation.  相似文献   

18.
Vanadyl ion (+4 oxidation state) has been shown to be an effective agent for chemoprotection of cancers in animals. For understanding the mechanism, distribution of vanadium was studied. More vanadium was found to accumulate in the nuclei of the liver of rats when it was given as vanadyl sulfate than when it was given as sodium vanadate (+5 oxidation state). The reactivity of vanadyl ion with DNA was investigated by the DNA cleavage technique and the reaction mechanism by ESR spectroscopy. Incubation of double-strand DNA with vanadyl ion and hydrogen peroxide resulted in marked concentration- and pH-dependent DNA cleavage. Studies by the ESR spin-trap method demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion with hydrogen peroxide. Thus the antineoplastic action of vanadyl ion is proposed to be due to DNA cleavage by hydroxyl radicals generated in the cells.  相似文献   

19.
The complexes [CuL(TpPh)] (HL = 5-tertbutylsalicylaldehyde, 5-tertbutyl-3-methylsulfanylsalicylaldehyde or 5-tertbutyl-3-phenylsulfanylsalicylaldehyde; [TpPh] = tris-{3-phenylpyrazolyl}hydridoborate) have been prepared, and adopt square-pyramidal coordination geometries. Each compound exhibits a ligand-based oxidation in CH2Cl2 that is chemically reversible by voltammetry. However, Coulometric determinations showed that the resultant phenoxyl radical products decomposed rapidly at low temperatures in bulk solution. This instability may reflect intramolecular steric repulsions between the phenoxide tertbutyl substituents, and a pyrazolylborate phenyl group. These results contrast with a previously reported analogous compound, bearing a 5-methyl-3-methylsulfanylsalicylaldehydato ligand, which yields a phenoxyl radical oxidation product that is stable for hours under the same conditions.  相似文献   

20.
The mononuclear [Mn(6′Me2indH)(H2O)2(CH3CN)](ClO4)2 (6′Me2indH: 1,3-bis(6′-methyl-2′-pyridylimino)isoindoline) complex has been prepared and characterized by various techniques such as elemental analysis, IR, UV-visible and ESR spectroscopy. The title compound was suitable as catalyst for the catalytic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBCH2) to 3,5-di-tert-butyl-1,2-benzoquinone (3,5-DTBQ) (catecholase activity), and o-aminophenol (OAPH) to 2-aminophenoxazine-3-one (APX) (phenoxazinone synthase activity) with dioxygen at ambient condition in good yields. Kinetic measurements revealed first-order dependence on the catalyst and dioxygen concentration and saturation type behavior with respect to the corresponding substrate. It was also found that the added triethylamine in both systems accelerates the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号