首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis was observed in the coleoptile and initial leaf in 5-8-day-old wheat seedlings grown under normal daylight. Apoptosis is an obligatory event in early wheat plant ontogenesis, and it is characterized by cytoplasmic structural reorganization and fragmentation, in particular, with the appearance in vacuoles of specific vesicles containing intact organelles, chromatin condensation and margination in the nucleus, and internucleosomal fragmentation of nuclear DNA. The earliest signs of programmed cell death (PCD) were observed in the cytoplasm, but the elements of apoptotic degradation in the nucleus appeared later. Nuclear DNA fragmentation was detected after chromatin condensation and the appearance in vacuoles of specific vesicles containing mitochondria. Two PCD varieties were observed in the initial leaf of 5-day-old seedlings grown under normal daylight: a proper apoptosis and vacuolar collapse. On the contrary, PCD in coleoptiles under various growing (light) conditions and in the initial leaf of etiolated seedlings is only a classical plant apoptosis. Therefore, various tissue-specific and light-dependent PCD forms do exist in plants. Amounts of O2*- and H2O2 evolved by seedlings grown under normal daylight are less than that evolved by etiolated seedlings. The amount of H2O2 formed in the presence of sodium salicylate or azide by seedlings grown under normal daylight was increased. Contrary to etiolated seedlings, the antioxidant BHT (ionol) did not inhibit O2*- formation and apoptosis and it had no influence on ontogenesis in the seedlings grown under normal daylight. Thus, in plants grown under the normal light regime the powerful system controlling the balance between formation and inactivation of reactive oxygen species (ROS) does exist and it effectively functions. This system is responsible for maintenance of cell homeostasis, and it regulates the crucial ROS level controlling plant growth and development. In etiolated plants, this system seems to be absent, or it is much less effective.  相似文献   

2.
We studied the process of apoptosis in etiolated wheat (Triticum aestivum L.) seedlings. As a result, an integral pattern of the apoptotic plant cell ultrastructure was established. In the apoptotic cells of the coleoptile, we observed chromatin condensation and margination, an increased density and specific cytoplasm fragmentation accompanied by the appearance of unusual cytoplasmic vesicles containing subcellular organelles, mitochondria in particular, in the vacuoles.  相似文献   

3.
Ionol (BHT), a compound having antioxidant activity, at concentrations in the range 1-50 mg/liter (0.45·10-5-2.27·10-4 M), inhibits growth of etiolated wheat seedlings, changes the morphology of their organs, prolongs the coleoptile life span, and prevents the appearance of specific features of aging and apoptosis in plants. In particular, BHT prevents the age-dependent decrease in total DNA content, apoptotic internucleosomal fragmentation of nuclear DNA, appearance in the cell vac-uole of specific vesicles with active mitochondria intensively producing mtDNA, and formation of heavy mitochondrial DNA ( = 1.718 g/cm3) in coleoptiles of etiolated wheat seedlings. BHT induces large structural changes in the organization of all cellular organelles (nucleus, mitochondria, plastids, Golgi apparatus, endocytoplasmic reticulum) and the formation of new unusual membrane structures in the cytoplasm. BHT distorts the division of nuclei and cells, and this results in the appearance of multi-bladed polyploid nuclei and multinuclear cells. In roots of etiolated wheat seedlings, BHT induces intensive synthesis of pigments, presumably carotenoids, and the differentiation of plastids with formation of chloro- or chromoplasts. The observed multiple effects of BHT are due to its antioxidative properties (the structural BHT analog 3,5-di-tert-butyltoluene is physiologically inert; it has no effect similar to that of BHT). Therefore, the reactive oxygen species (ROS) controlled by BHT seem to trigger apoptosis and the structural reorganization of the cytoplasm in the apoptotic cell with formation of specific vac-uolar vesicles that contain active mitochondria intensively producing mtDNA. Thus, the inactivation of ROS by BHT may be responsible for the observed changes in the structure of all the mentioned cellular organelles. This corresponds to the idea that ROS control apoptosis and mitosis including formation of cell wall, and they are powerful secondary messengers that regulate dif-ferentiation of plastids and the Golgi apparatus in plants.  相似文献   

4.
DNase activity in coleoptiles and the first leaf apices of winter wheat (Triticum aestivum L., cv. Mironovskaya 808) etiolated seedlings was found to increase significantly during seedling growth, peaking on the eighth day of plant development. The maximum of DNase activity was coincident with apoptotic internucleosomal DNA fragmentation in these organs. Wheat endonucleases are capable of hydrolyzing both singleand double-stranded DNA of various origins. The leaf and coleoptiles were found to exhibit nuclease activities that hydrolyzed the lambda phage DNA with N6-methyladenine and 5-methylcytosine more actively compared to the hydrolysis of similar unmethylated DNAs. Thus, the endonucleases of wheat seedlings are sensitive to the methylation status of their substrate DNAs. The leaves and coleoptiles exhibited both Ca2+/Mg2+- and Zn2+-dependent nuclease activities that underwent differential changes during development and senescence of seedling organs. EDTA at a concentration of 50 mM fully inhibited the total DNase activity. Electrophoretic heterogeneity was observed for DNase activities operating simultaneously in the coleoptile and the first leaf at different stages of seedling development. Proteins exhibiting DNase activity (16–80 kD mol wt) were revealed in the first leaf and the coleoptile; these proteins were mostly nucleases with the pH optimum around 7.0. Some endonucleases (mol wts of 36, 39, and 28 kD) were present in both organs of the seedling. Some other DNases (mol wts of 16, 56, and about 80 kD) were found in the coleoptile; these DNases hydrolyzed DNA in the nucleus at terminal stages of apoptosis. Different suites of DNase activities were revealed in the nucleus and the cytoplasm, the nuclear DNase activities being more diverse than the cytoplasmic ones. Thus, the cellular (organspecific) and subcellular heterogeneity in composition and activities of DNases has been revealed in wheat plants. These DNases undergo specific changes during seedling development, serving at various stages of programmed cell death in seedling tissues.  相似文献   

5.
The antioxidant butylated hydroxytoluene (BHT, 50 mg/l, 2.27 × 10–4 M) was found to prevent the development of characteristic signs of senescence and apoptosis in the cells of etiolated wheat (Triticum aestivum L.) seedlings. In particular, BHT blocked the apoptotic and age-induced formation of specific cytoplasmic mitochondria-containing vesicles in the coleoptiles. In contrast, the oxidants (H2O2 and cumene hydroxyperoxide) accelerated apoptosis (DNA fragmentation) in the coleoptiles and induced it in the first leaves, while in the control leaves, there were no signs of apoptosis. Thus, the programmed developmental apoptosis is controlled by the reactive oxygen species (ROS), and anti- and prooxidants can actively affect this process. In the coleoptile, BHT induced substantial changes in the ultrastructure of all cell organelles (nucleus, mitochondria, plastids, Golgi apparatus, and endoplasmic reticulum). It also induced the formation of unusual membrane structures in the cytoplasm and impaired nucleus and cell divisions. As a result, giant multilobed nuclei and multinuclear cells appeared. The effects of the antioxidant were tissue-specific: BHT did not noticeably affect cell ultrastructure in the first leaf. In roots of etiolated seedlings, BHT stimulated unusual plastid differentiation that resulted in the formation of chloroplasts, which is a phenomenon abnormal for roots. The BHT effects on the plant are evidently related to its antioxidant properties. Indeed, its structural analog, 3,5-di-tert-butyltoluene, which does not exhibit antioxidant properties, was physiologically inert. The BHT-controlled ROS evidently triggered apoptosis and produced age-dependent structural rearrangements of the cytoplasm and the formation of specific mitochondria-containing vesicles, which actively synthesize mtDNA. ROS inactivation by BHT is evidently responsible for BHT-induced changes in the structure of all cell organelles. Therefore, we believe that ROS control cell division (including nucleus division and cell-wall formation) and affect the differentiation of plastids and Golgi apparatus. In such a way, ROS effectively control plant growth and development.  相似文献   

6.
Effect of d-mannose treatment on different antioxidants, phenolics, protease activity, lipid peroxidation, DNA damage and cell death was investigated in coleoptiles of etiolated wheat seedlings. Modulations in these biochemical parameters were monitored up to 96 h after treatment at 24 h intervals. With accelerating effect on initial signs of cell death, i.e., appearance of long DNA fragmentation and no effect on initiation of terminal stage, i.e., internucleosomal nDNA fragmentation, mannose treatment (1 % = 56 mM) diminished the antioxidant activities in wheat coleoptiles. Mannose treatment decreased the catalase activity at all intervals, while APX and POD activities decreased at 72 h. Peroxidation of lipids increased at 72 h after mannose treatment. Levels of most of antioxidants, i.e., SOD, peroxidases and phenolics were raised during initial time period (24–48 h) of mannose treatment probably as an attempt to counter the stress effect. Protease activity gradually increased and protein content decreased with time in both treated and non-treated coleoptiles. Sharp decrease in CAT, APX and peroxidase activities and increase in lipid peroxidation at 72 h overlaps with apoptotic internucleosomal nDNA fragmentation in this organ. This coincidence points towards the importance of compromised antioxidant defense and involvement of reactive oxygen species in initiation of terminal stage of programmed cell death in wheat coleoptile. In conclusion, accelerating effect on DNA fragmentation and lipid peroxidation along with diminished antioxidant activities at the time of internucleosomal nDNA fragmentation, provide evidence for pro-apoptotic effect of d-mannose in wheat coleoptile.  相似文献   

7.
It was found that production of superoxide (O2 – ·) is crucial for normal morphogenesis of etiolated wheat seedlings in the early stages of plant development. The development of etiolated wheat seedlings was shown to be accompanied with cyclic changes in the rate of O2 – · production both in the entire intact seedling and in its separated organs (leaf, coleoptile). First increase in the rate of O2 – · production was clearly observed in the period from two to four days of seedling development, then the rate of O2 – · production decreased to the initial level, and then it increased again for two days to a new maximum. An increase in O2 – · production in the period of the first four days of seedling development correlates with an increase in DNA and protein contents in the coleoptile. The second peak of increased rate of O2 – · production observed on the sixth or seventh day of seedling development coincides with a decrease in DNA and protein contents and apoptotic internucleosomal nuclear DNA fragmentation in the coleoptile. Incubation of seedlings in the presence of the antioxidant BHT (ionol) strongly affects their development but it does not influence the increase in DNA and protein contents for the initial four days of seedling life, and it slows down the subsequent age-dependent decrease in protein content and fully prevents the age-dependent decrease in DNA content in the coleoptile. A decrease in the O2 – · amount induced by BHT distorts the seedling development. BHT retards seedling growth, presumably by suppression of cell elongation, and it increases the life span of the coleoptile. It seems that O2 – · controls plant growth by cell elongation at the early stages of seedling development but later O2 – · controls (induces) apoptotic DNA fragmentation and protein disintegration.  相似文献   

8.
The development of etiolated wheat (Triticum aestivum L.) seedlings is necessarily accompanied by apoptosis in their coleoptiles and first leaves. Internucleosome DNA fragmentation, which is characteristic of apoptosis, was detected in the coleoptile as soon as six days after germination. After eight days of germination, DNA fragmentation was clearly expressed in the coleoptile and was noticeable in the apical part of the first-leaf blade. Growing of intact seedlings or incubation of their shoots in the presence of such phytohormones as benzyladenine, gibberellin A3, fusicoccin C, and 2,4-D at the concentration of 10–5 M did not essentially affect DNA fragmentation in the coleoptile. As distinct from antioxidants, none of the phytohormones used prevented apoptosis in wheat seedlings. In contrast, ABA (10–5 M) and an ethylene producer, ethrel (2-chloroethylphosphonic acid, 10–2–10–3 M), stimulated sharply DNA fragmentation in the coleoptile. An inhibitor of DNA methylation, 5-azacytidine, was very efficient in the stimulation of DNA fragmentation in the coleoptiles of eight-day-old seedlings at its concentration of 100 g/ml. Thus, some phytohormones can regulate apoptosis, and DNA methylation is involved in this process. Our results indicate that apoptosis activation by some phytohormones may be mediated by their regulation of DNA methylation/demethylation, which is responsible for the induction of genes encoding apoptogenic proteins and/or the repression of antiapoptotic genes.  相似文献   

9.
Excision of chromatin loop domains and internucleosomal DNA fragmentation are widely considered as consecutive stages of chromatin disassembly during apoptosis. We report here on apoptosis induced by staurosporine in NB-2a neuroblastoma cells, which was accompanied by excision of chromatin loop domains, but proceeded without internucleosomal DNA cleavage. In contrast to apoptosis associated with internucleosomal DNA fragmentation, the apoptotic pathway associated with excision of chromatin loop domains was largely caspase independent. We identify here MAPK family member, p38/JNK, mitochondria, and topoisomerase II as the components of this caspase-independent apoptotic pathway. While caspase-independent excision of chromatin loop domains was a predominant mechanism of DNA disintegration in staurosporine-treated neuroblastoma, both caspase-dependent internucleosomal DNA fragmentation and caspase-independent excision of chromatin loop domains accompanied staurosporine-induced apoptosis of promyelocytic leukemia cells. Our results suggest that caspase-independent excision of chromatin loop domains represents a separate cell death pathway, which operates either in parallel or independently from caspase-dependent internucleosomal DNA fragmentation.  相似文献   

10.
Vacuole-mediated proteolysis is important to sustained growth of filamentous wood-decaying fungi such as Schizophyllum commune. Demonstrating that specific proteases are vacuole associated has been difficult in these organisms due to the lack of specific markers for vacuolar compartments. We used 5-(and 6-)-carboxy-2′, 7′-dichlorofluorescein diacetate (carboxy-DCFDA) and a proprietary vacuolar membrane marker for yeast (MDY-64; Molecular Probes) for in situ fluorescent labeling of the vacuoles of S. commune mycelia grown on microscope slides. MDY-64 labels numerous small vesicles in S. commune mycelia in addition to larger vacuolar structures. In contrast, carboxy-DCFDA apparently is taken up by a subset of the MDY-64-labeled vesicles, accumulating primarily in larger vacuoles. Staining of mycelia with carboxy-DCFDA shows a transition from mostly cytoplasmic fluorescence in apical cells with little vacuolar fluorescence to nearly complete sequestration of the stain in vacuoles of older cells. In penultimate cells, both cytoplasm and vacuolar structures fluoresce. Vacuoles stained with carboxy-DCFDA typically were spherical and ranged in size from 0.4 μm to 3.2 μm in diameter with a mean of 1.8 um. Occasionally, in penultimate cells, tubular structures which stained with carboxy-DCFDA were found. ScPrB, a principal enzyme of nitrogen-limitation induced autolysis in S. commune, copurified in sucrose density gradients with carboxy-DCFDA and acid phosphatase, demonstrating its vacuolar localization. Received: 23 December 1998 / Accepted: 11 January 1999  相似文献   

11.
12.
Discrete cleavages within 28S rRNA divergent domains have previously been found to coincide with DNA fragmentation during apoptosis. Here we show that rRNA and DNA cleavages can occur independently in apoptotic cells, i.e. that the previously observed correlation is likely to be coincidental. In HL-60 cells, apoptosis with massive DNA fragmentation could be induced without any signs of rRNA cleavage. The opposite situation; rRNA cleavage without concomitant internucleosomal DNA fragmentation, was found in okadaic acid-treated Molt-4 cells. Other leukemia cell lines underwent apoptosis either without (K562 and Molt-3) or with (U937) both forms of polynucleotide cleavage. In K562 cells transfected with a temperature-sensitive p53 mutant, internucleosomal DNA fragmentation but not 28S rRNA cleavage was inducible by wild-type p53 expression. The absence of apoptotic rRNA cleavage in some cell types suggests that this phenomenon is tightly regulated and unrelated to DNA fragmentation or a presumed scheme for general macromolecular degradation in apoptotic cells.  相似文献   

13.
Domínguez F  Moreno J  Cejudo FJ 《Planta》2001,213(3):352-360
The nucellus, which is the maternal tissue of the wheat grain, degenerates during the early stages of development. We have investigated whether or not this degenerative process may be considered as programmed cell death (PCD). The analysis of DNA of tissues dissected from developing wheat (Triticum aestivum L. cv Chinese Spring) grains at 5-20 days post anthesis (dpa) showed the presence of DNA laddering, which is indicative of internucleosomal fragmentation of nuclear DNA, in maternal tissues but not in the endosperm. The TUNEL assay showed in-situ internucleosomal fragmentation of DNA in nuclei of parenchymal and epidermal cells of the nucellus, as well as in the pericarp, during the early stages of grain development (5 dpa). Furthermore, internucleosomal fragmentation of nuclear DNA was observed in nucellar projection cells in the middle stages of grain development (13-18 dpa), thus showing a process of PCD in these maternal tissues. Electron-transmission microscopy analysis allowed the morphology of PCD to be characterized in this plant tissue. Initially, fragmentation of the cytoplasm was observed, the nuclear envelope appeared dilated and to be forming vacuoles, and the content of heterochromatin increased. A progressive degradation of the cytosolic contents and organelles was observed, and the plasma membrane was disrupted. However, the Golgi apparatus remained intact and apparently functional even in the final stages of cell death.  相似文献   

14.
Zinc ions exert an inhibitory effect on Ca(2+)Mg(2+)-dependent endonuclease which is supposed to be responsible for the fragmentation of DNA during apoptosis. In the experimental system we used, that is HeLa cells treated with VP-16, the protection from internucleosomal DNA degradation is modulated by Zn concentration and appears to be dependent on the time after treatment. This effect does not prevent cell death or occurrence of apoptotic parameters, suggesting that DNA ladder appearance is not a crucial event in apoptosis. The activation of poly(ADP-ribose)polymerase following the administration of VP-16, is not observed in cells in which DNA fragmentation has been abolished by zinc, supporting the hypothesis that this event is regulated by the appearance of small-sized DNA fragments.  相似文献   

15.
Specific DNA fragmentation into oligonucleosomal units occurs during programmed cell death (PCD) in both animal and plant cells, usually being regarded as an indicator of its apoptotic character. This internucleosomal DNA fragmentation is demonstrated in tobacco suspension and leaf cells, which were killed immediately by freezing in liquid nitrogen, and homogenization or treatment with Triton X-100. Although these cells could not activate and realize the respective enzymatic processes in a programmed manner, the character of DNA fragmentation was similar to that in the cells undergoing typical gradual PCD induced by 50 microM CdSO4. This internucleosomal DNA fragmentation was connected with the action of cysteine proteases and the loss of membrane, in particular tonoplast, integrity. The mechanisms of DNase activation in the rapidly killed cells, hypothetical biological relevance, and implications for the classification of cell death are discussed.  相似文献   

16.
Bafilomycin A1, a specific inhibitor of the vacuolar-type H+-ATPase, responsible for acidification of intra-cellular compartments, prevents the vacuolization of Hela cells induced by H. pylori, with an inhibitory concentration giving 50% of maximal (ID50) of 4 nM. Bafilomycin A1 is also very efficient in restoring vacuolated cells to a normal appearance. The vacuolating activity of Helicobacter pylori is not inhibited by a series of specific inhibitors of vacuolar H+-ATPases. These findings indicate that a transmembrane pH gradient is needed for the formation and growth of vacuoles caused by the bacterium and that this pH gradient is due to the activity of a vacuolar ATPase proton pump of HeLa cells.  相似文献   

17.
It was established that total proteolytic activity in etiolated wheat seedlings changes in ontogenesis in cycles: peaks of proteolytic activity correspond to the 3rd, 5th, and 8th days of seedling growth, respectively. The maximum of proteolytic activity preceded the maximum of nuclease activity, which may be due to activation of nucleases by proteolytic enzymes. According to inhibitory analysis the cysteine and serine proteases play the main role in apoptosis in wheat coleoptiles. Growing of seedlings in the presence of ethrel stimulated apoptosis in the coleoptile, and it increased (almost 6-fold) the proteolytic activity in its cells. On the other hand, the antioxidant ionol (BHT) suppressed the induction of proteases, particularly at the second stage of coleoptile development, and it slowed down the increase in the nuclease activity after 6th day of the seedling life. It is suggested that phytohormones and antioxidants participate in regulation of apoptosis in the ageing coleoptile, directly or indirectly effecting the proteolytic apparatus in the coleoptile cells.  相似文献   

18.
Background: To evaluate the influence of hypoxia and molecular events in endothelial and embryonic stem cells.Materials and Methods: Human umbilical vein endothelial cells (HUVECs) and mouse embryoid body (EB) cells were subjected to hypoxic conditions for different time courses. DNA fragmentation assay, quantification of apoptotic cells by TUNEL assay measured by flowcytometry, and Western blot analysis for the molecular events of apoptosis were performed.Results: DNA fragmentation could be identified under hypoxic conditions in HUVECs and mouse EBs. The DNA fragmentation increased when the hypoxic interval was extended.In situ internucleosomal DNA fragmentation-TUNEL assay also found that the percentages of apoptotic cells increased gradually in HUVECs and mouse EBs when the hypoxic interval was extended. Furthermore, the levels of expression of p53 and Bax both increased in hypoxic conditions.Conclusions: Hypoxia increases both HUVEC and mouse EB apoptosis, which is associated with increase in p53/Bax expression.  相似文献   

19.
小麦淀粉胚乳发育期间的程序性细胞死亡   总被引:5,自引:0,他引:5  
小麦淀粉胚乳在发育过程中经历程序性细胞死亡(PCD).小麦淀粉胚乳的DNA在发育的特定阶段呈现梯状电泳条带,用乙烯处理使DNA片段化发生的时间提前,而且ABA处理虽然不能推迟DNA片段化的发生时间,但能减弱DNA片段化的程度.小麦淀粉胚乳细胞在PCD过程中出现某些动植物细胞凋亡的共同的结构变化特征,但也有一些独特的结构变化.如染色质凝聚后仅少数染色质块发生趋边化;细胞核在PCD过程中最先开始衰退,细胞核解体时胞质中有丰富的细胞器,细胞核解体后细胞并未死亡,在胞质中仍在合成和积累淀粉和储藏蛋白,直到细胞被淀粉充满,细胞才死亡;不形成凋亡小体,死亡的淀粉胚乳细胞成为营养物质的储藏库.因此小麦淀粉胚乳细胞的PCD是一种特殊形式的PCD.  相似文献   

20.
Previously, we have purified three distinct DNases from spermatozoa of sea urchin Strongylocentrotus intermedius and we suppose the role of Ca2+, Mg2+-dependent DNase (Ca, Mg-DNase) in apoptosis of spermatozoa. Two-headed sphingolipid rhizochalin (Rhz) induced characteristic apoptotic nuclear chromatin changes, internucleosomal DNA cleavage, and activation of caspase-9, caspase-8, and caspase-3 in spermatozoa as was shown by fluorescence Hoechst 33342/PI/FDA analysis, DNA fragmentation assay, and fluorescence caspase inhibitors FAM-LEHD-fmk, FAM-IETD-fmk, and FAM-DEVD-fmk, respectively. Inhibitor of caspase-3 z-DEVD-fmk subdued Rhz-induced internucleosomal ladder formation, which confirmed the major role of caspase-3 in apoptotic DNA cleavage probably through Ca, Mg-DNase activation. Participation of sea urchin Ca, Mg-DNase in apoptosis of spermatozoa was demonstrated by ions Zn2+ blocking of Rhz-induced DNA fragmentation due to direct inhibition of the Ca, Mg-DNase and internucleosomal cleavage of HeLa S and Vero E6 cell nuclei chromatin by highly purified Ca, Mg-DNase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号