首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have shown that pituitary growth hormone displays an episodic pattern of evolution, with a slow underlying evolutionary rate and occasional sustained bursts of rapid change. The present study establishes that pituitary prolactin shows a similar pattern. During much of tetrapod evolution the sequence of prolactin has been strongly conserved, showing a slow basal rate of change (approx 0.27 × 109 substitutions/amino acid site/year). This rate has increased substantially (∼12- to 38-fold) on at least four occasions during eutherian evolution, during the evolution of primates, artiodactyls, rodents, and elephants. That these increases are real and not a consequence of inadvertant comparison of paralogous genes is shown (for at least the first three groups) by the fact that they are confined to mature protein coding sequence and not apparent in sequences coding for signal peptides or when synonymous substitutions are examined. Sequences of teleost prolactins differ markedly from those of tetrapods and lungfish, but during the course of teleost evolution the rate of change of prolactin has been less variable than that of growth hormone. It is concluded that the evolutionary pattern seen for prolactin shows long periods of near-stasis interrupted by occasional bursts of rapid change, resembling the pattern seen for growth hormone in general but not in detail. The most likely basis for these bursts appears to be adaptive evolution though the biological changes involved are relatively small. Received: 31 August 1999 / Accepted: 9 February 2000  相似文献   

2.
Characteristic features of tRNA such as the anticodon sequence and modified nucleotides in the anticodon loop are thought to be crucial effectors for promoting or restricting codon reassignment. Our recent findings on basepairing rules between anticodon and codon in various metazoan mitochondria suggest that the complete loss of a codon is not necessarily essential for codon reassignment to take place. We postulate that a possible competition between two tRNAs with cognate anticodon sequences towards the relevant codon to be varied has a potential role in codon reassignment. Our proposition can be viewed as an expanded version of the codon capture theory proposed by Osawa and Jukes (J Mol Evol 28: 271–278, 1989). Received: 28 December 2000 / Accepted: 12 March 2001  相似文献   

3.
Codon Usage Bias and tRNA Abundance in Drosophila   总被引:5,自引:0,他引:5  
Codon usage bias of 1,117 Drosophila melanogaster genes, as well as fewer D. pseudoobscura and D. virilis genes, was examined from the perspective of relative abundance of isoaccepting tRNAs and their changes during development. We found that each amino acid contributes about equally and highly significantly to overall codon usage bias, with the exception of Asp which had very low contribution to overall bias. Asp was also the only amino acid that did not show a clear preference for one of its synonymous codons. Synonymous codon usage in Drosophila was consistent with ``optimal' codons deduced from the isoaccepting tRNA availability. Interestingly, amino acids whose major isoaccepting tRNAs change during development did not show as strong bias as those with developmentally unchanged tRNA pools. Asp is the only amino acid for which the major isoaccepting tRNAs change between larval and adult stages. We conclude that synonymous codon usage in Drosophila is well explained by tRNA availability and is probably influenced by developmental changes in relative abundance. Received: 5 December 1996 / Accepted: 14 June 1997  相似文献   

4.
We previously reported the sequence of a 9260-bp fragment of mitochondrial (mt) DNA of the cephalopod Loligo bleekeri [J. Sasuga et al. (1999) J. Mol. Evol. 48:692–702]. To clarify further the characteristics of Loligo mtDNA, we have sequenced an 8148-bp fragment to reveal the complete mt genome sequence. Loligo mtDNA is 17,211 bp long and possesses a standard set of metazoan mt genes. Its gene arrangement is not identical to any other metazoan mt gene arrangement reported so far. Three of the 19 noncoding regions longer than 10 bp are 515, 507, and 509 bp long, and their sequences are nearly identical, suggesting that multiplication of these noncoding regions occurred in an ancestral Loligo mt genome. Comparison of the gene arrangements of Loligo, Katharina tunicata, and Littorina saxatilis mt genomes revealed that 17 tRNA genes of the Loligo mt genome are adjacent to noncoding regions. A majority (15 tRNA genes) of their counterparts is found in two tRNA gene clusters of the Katharina mt genome. Therefore, the Loligo mt genome (17 tRNA genes) may have spread over the genome, and this may have been coupled with the multiplication of the noncoding regions. Maximum likelihood analysis of mt protein genes supports the clade Mollusca + Annelida + Brachiopoda but fails to infer the relationships among Katharina, Loligo, and three gastropod species. Received: 9 May 2001 / Accepted: 3 October 2001  相似文献   

5.
The protein sequence of ATP/CTP:tRNA nucleotidyltransferase (cca) from Sulfolobus shibatae was used to search open reading frames in the genome of Methanococcus jannaschii. Translations of two unidentified open reading frames showed significant sequence similarity to portions of the Sulfolobus cca protein. When the two open reading frames were joined together, the expanded open reading frame was similar in sequence to the entire Sulfolobus cca protein and displayed features of the active site signature sequence proposed for members of class I enzymes within the superfamily of nucleotidyltransferases (Yue et al., 1996, RNA 2, 895–908). A possible UUG start codon was identified based on significant sequence similarity of the resulting amino-terminal region to that of Sulfolobus, and on a six-base complementarity between an adjacent upstream sequence and Methanococcus 16S rRNA. Received: 10 February 1997  相似文献   

6.
7.
Protein disulfide isomerase (PDI) is an enzyme that promotes protein folding by catalyzing disulfide bridge isomerization. PDI and its relatives form a diverse protein family whose members are characterized by thioredoxin-like (TX) domains in the primary structures. The family was classified into four classes by the number and the relative positions of the TX domains. To investigate the evolution of the domain structures, we aligned the amino acid sequences of the TX domains, and the molecular phylogeny was examined by the NJ and ML methods. We found that all of the current members of the PDI family have evolved from an ancestral enzyme, which has two TX domains in the primary structure. The diverse domain structures of the members have been generated through domain duplications and deletions.  相似文献   

8.
The Molecular Evolution of the Vertebrate Trypsinogens   总被引:1,自引:0,他引:1  
We expand the already large number of known trypsinogen nucleotide and amino acid sequences by presenting additional trypsinogen sequences from the tunicate (Boltenia villosa), the lamprey (Petromyzon marinus), the pufferfish (Fugu rubripes), and the frog (Xenopus laevis). The current array of known trypsinogen sequences now spans the entire vertebrate phylogeny. Phylogenetic analysis is made difficult by the presence of multiple isozymes within species and rates of evolution that vary highly between both species and isozymes. We nevertheless present a Fitch-Margoliash phylogeny constructed from pairwise distances. We employ this phylogeny as a vehicle for speculation on the evolution of the trypsinogen gene family as well as the general modes of evolution of multigene families. Unique attributes of the lamprey and tunicate trypsinogens are noted. Received: 12 July 1997  相似文献   

9.
It has recently been argued that living metazoans diverged over 800 million years ago, based on evidence from 22 nuclear genes for such a deep divergence between vertebrates and arthropods (Gu 1998). Two ``internal' calibration points were used. However, only one fossil divergence date (the mammal–bird split) was directly used to calibrate the molecular clock. The second calibration point (the primate–rodent split) was based on molecular estimates that were ultimately also calibrated by the same mammal–bird split. However, the first tetrapods that can be assigned with confidence to either the mammal (synapsid) lineage or the bird (diapsid) lineage are approximately 288 million years old, while the first mammals that can be assigned with confidence to either the primate or the rodent lineages are 65 million years old, or 85 million years old if ferungulates are part of the primate lineage and zhelestids are accepted as ferungulate relatives. Recalibration of the protein data using these fossil dates indicates that metazoans diverged between 791 and 528 million years ago, a result broadly consistent with the palaeontological documentation of the ``Cambrian explosion.' The third, ``external' calibration point (the metazoan–fungal divergence) was similarly problematic, since it was based on a controversial molecular study (which in turn used fossil dates including the mammal–bird split); direct use of fossils for this calibration point gives the absurd dating of 455 million years for metazoan divergences. Similar calibration problems affect another recent study (Wang et al. 1999), which proposes divergences for metazoans of 1000 million years or more: recalibrations of their clock again yields much more recent dates, some consistent with a ``Cambrian explosion' scenario. Molecular clock studies have persuasively argued for the imperfection of the fossil record but have rarely acknowledged that their inferences are also directly based on this same record. Received: 26 January 1999 / Accepted: 14 April 1999  相似文献   

10.
Fcγ receptor III (FcγRIII), a low-affinity receptor for the Fc portion of immunoglobulin G (IgG Fc), targets antigen-antibody complexes in a variety of effector cells of the immune system. We have investigated FcγRIII and IgG Fc polymorphism and made comparative analysis of the functional and evolutionary implications of the interaction between these two molecules. Sequence analysis and comparison of the three-dimensional structure suggest that the C-terminal Ig domain of FcγRIII is associated with the binding of IgG. The polymorphic residues of FcγRIII are mainly located in the region of the C-terminal Ig domain that might be involved in IgG binding. Therefore, polymorphism and functional binding affinity seems to be related to each other as has been increasingly implicated in clinical observations. IgG Fcs, the natural ligand of FcγRs, also exhibit significant polymorphism. Three regions have been identified where polymorphism frequently occurs: the putative FcR binding site, the linker region, and the intermolecular domain-domain interface of the second Ig domain. The putative FcγR binding sites where polymorphic, and isotype-specific residues cluster are consistent with the regions that have been identified by mutagenesis and molecular modeling studies. The polymorphic residues of IgG Fc were mainly located in the molecular surface, which could be used in the recognition of other binding molecules. These observations suggest that polymorphic and isotype-specific residues in IgG Fc are closely related to their function and protein-protein interaction. Therefore, the colocalization of the polymorphic residues of FcγRIII and IgG Fcs at their docking sites implies that the polymorphic residues would affect the IgG-FcγRIII binding interactions to optimize their signaling through evolution. Received: 9 December 1999 / Accepted: 15 February 2001  相似文献   

11.
The phylogenetic relationships of 106 European cyprinid taxa were determined based on the complete nucleotide sequence (1140 bp) of the mitochondrial cytochrome b gene. The molecular phylogeny was used (1) to revise the current systematics of European cyprinids, (2) to establish the phylogenetic utility of traditional morphological characters that are widely used in Cyprinidae systematics, and (3) to discuss alternative hypotheses on the biogeography of the family in Europe. The age of the major lineages within European cyprinids was tentatively estimated with a molecular clock and showed full agreement with the fossil record of the group. Moreover, the results provided unambiguous evidence for a close phylogenetic affinity of some Caucasian and Greek endemic cyprinid taxa (e.g., B. capito and B. brachycephalus and Leuciscus keadicus, Barbus graecus, and B. albanicus, respectively) to Iberian and North African, but not Central European, cyprinids. The existence of such unexpected phylogenetic relationships refutes the classical hypothesis on the biogeography of European cyprinids, which assumes a dispersal of the cyprinid fauna from central Europe to southern Europe and northern Africa during the Miocene (and, hence, predicts a close phylogenetic relationship of all Caucasian, Greek, Iberian, and North African cyprinids to central European taxa). Instead, the existence of a Mediterranean realm independent of the central European route seems plausible based on the molecular evidence. It is likely that the new biogeographical scenario proposed here might apply to other primary freshwater European animals with low dispersal abilities, including fish, amphibians, and invertebrates. Received: 2 February 1999 / Accepted: 16 March 1999  相似文献   

12.
The chaetognaths are an extraordinarily homogeneous phylum of animals at the morphological level, with a bauplan that can be traced back to the Cambrian. Despite the attention of zoologists for over two centuries, there is little agreement on classification within the phylum. We have used a molecular biological approach to investigate the phylogeny of extant chaetognaths. A rapidly evolving expansion segment toward the 5′ end of 28S ribosomal DNA (rDNA) was amplified using the polymerase chain reaction (PCR), cloned, and sequenced from 26 chaetognath samples representing 18 species. An unusual finding was the presence of two distinct classes of 28S rDNA gene in chaetognaths; our analyses suggest these arose by a gene (or gene cluster) duplication in a common ancestor of extant chaetognaths. The two classes of chaetognath 28S rDNA have been subject to different rates of molecular evolution; we present evidence that both are expressed and functional. In phylogenetic reconstructions, the two classes of 28S rDNA yield trees that root each other; these clearly demonstrate that the Aphragmophora and Phragmophora are natural groups. Within the Aphragmophora, we find good support for the groupings denoted Solidosagitta, Parasagitta, and Pseudosagitta. The relationships between several well-supported groups within the Aphragmophora are uncertain; we suggest this reflects rapid, recent radiation during chaetognath evolution. Received: 19 March 1996 / Accepted: 5 August 1996  相似文献   

13.
Protein kinases C (PKCs) comprise closely related Ser/Thr kinases, ubiquitously present in animal tissues; they respond to second messengers, e.g., Ca2+ and/or diacylglycerol, to express their activities. Two PKCs have been sequenced from Geodia cydonium, a member of the lowest multicellular animals, the sponges (Porifera). One sponge G. cydonium PKC, GCPKC1, belongs to the ``novel' (Ca2+-independent) PKC (nPKC) subfamily while the second one, GCPKC2, has the hallmarks of the ``conventional' (Ca2+-dependent) PKC (cPKC) subfamily. The alignment of the Ser/Thr catalytic kinase domains, of the predicted aa sequences for these cDNAs with respective segments from previously reported sequences, revealed highest homology to PKCs from animals but also distant relationships to Ser/Thr kinases from protozoa, plants, and bacteria. However, a comparison of the complete structures of the sponge PKCs, which are—already—identical to those of nPKCs and cPKCs from higher metazoa, with the structures of protozoan, plant, and bacterial Ser/Thr kinases indicates that the metazoan PKCs have to be distinguished from the nonmetazoan enzymes. These data indicate that metazoan PKCs have a universal common ancestor which they share with the nonmetazoan Ser/Thr kinases with respect to the kinase domain, but they differ from them in overall structural composition. Received: 10 January 1996 / Accepted: 12 March 1996  相似文献   

14.
A heuristic approach to search for the maximum-likelihood (ML) phylogenetic tree based on a genetic algorithm (GA) has been developed. It outputs the best tree as well as multiple alternative trees that are not significantly worse than the best one on the basis of the likelihood criterion. These near-optimum trees are subjected to further statistical tests. This approach enables ones to infer phylogenetic trees of over 20 taxa taking account of the rate heterogeneity among sites on practical time scales on a PC cluster. Computer simulations were conducted to compare the efficiency of the present approach with that of several likelihood-based methods and distance-based methods, using amino acid sequence data of relatively large (5–24) taxa. The superiority of the ML method over distance-based methods increases as the condition of simulations becomes more realistic (an incorrect model is assumed or many taxa are involved). This approach was applied to the inference of the universal tree based on the concatenated amino acid sequences of vertically descendent genes that are shared among all genomes whose complete sequences have been reported. The inferred tree strongly supports that Archaea is paraphyletic and Eukarya is specifically related to Crenarchaeota. Apart from the paraphyly of Archaea and some minor disagreements, the universal tree based on these genes is largely consistent with the universal tree based on SSU rRNA. Received: 4 January 2001 / Accepted: 16 May 2001  相似文献   

15.
16.
Major parts of amino-acid-coding regions of elongation factor (EF)-1α and EF-2 in Trichomonas tenax were amplified by PCR from total genomic DNA and the products were cloned into a plasmid vector, pGEM-T. The three clones from each of the products of the EF-1α and EF-2 were isolated and sequenced. The insert DNAs of the clones containing EF-1α coding regions were each 1,185 bp long with the same nucleotide sequence and contained 53.1% of G + C nucleotides. Those of the clones containing EF-2 coding regions had two different sequences; one was 2,283 bp long and the other was 2,286 bp long, and their G + C contents were 52.5 and 52.9%, respectively. The copy numbers of the EF-1α and EF-2 gene per chromosome were estimated as four and two, respectively. The deduced amino acid sequences obtained by the conceptual translation were 395 residues from EF-1α and 761 and 762 residues from the EF-2s. The sequences were aligned with the other eukaryotic and archaebacterial EF-1αs and EF-2s, respectively. The phylogenetic position of T. tenax was inferred by the maximum likelihood (ML) method using the EF-1α and EF-2 data sets. The EF-1α analysis suggested that three mitochondrion-lacking protozoa, Glugea plecoglossi, Giardia lamblia, and T. tenax, respectively, diverge in this order in the very early phase of eukaryotic evolution. The EF-2 analysis also supported the divergence of T. tenax to be immediately next to G. lamblia. Received: 15 February 1996 / Accepted: 28 June 1996  相似文献   

17.
We have studied the interaction of the polycationic peptide antibiotic polymyxin B (PMB) with asymmetric planar bilayer membranes via electrical measurements. The bilayers were of different compositions, including those of the lipid matrices of the outer membranes of various species of Gram-negative bacteria. One leaflet, representing the bacterial inner leaflet, consisted of a phospholipid mixture (PL; phosphatidylethanolamine, -glycerol, and diphosphatidylglycerol in a molar ratio of 81:17:2). The other (outer) leaflet consisted either of lipopolysaccharide (LPS) from deep rough mutants of PMB-sensitive (Escherichia coli F515) or -resistant strains (Proteus mirabilis R45), glycosphingolipid (GSL-1) from Sphingomonas paucimobilis IAM 12576, or phospholipids (phosphatidylglycerol, diphytanoylphosphatidylcholine). In all membrane systems, the addition of PMB to the outer leaflet led to the induction of current fluctuations due to transient membrane lesions. The minimal PMB concentration required for the induction of the lesions and their size correlated with the charge of the lipid molecules. In the membrane system resembling the lipid matrix of a PMB-sensitive strain (F515 LPS/PL), the diameters of the lesions were large enough (d= 2.4 nm ± 8%) to allow PMB molecules to permeate (self-promoted transport), but in all other systems they were too small. A comparison of these phenomena with membrane effects induced by detergents (dodecyltriphenylphosphonium bromide, dodecyltrimethylammonium bromide, sodiumdodecylsulfate) revealed a detergent-like mechanism of the PMB-membrane interaction. Received: 16 September 1997/Revised: 25 November 1997  相似文献   

18.
19.
We have investigated the phylogenetic relationships of monotremes and marsupials using nucleotide sequence data from the neurotrophins; nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3). The study included species representing monotremes, Australasian marsupials and placentals, as well as species representing birds, reptiles, and fish. PCR was used to amplify fragments encoding parts of the neurotrophin genes from echidna, platypus, and eight marsupials from four different orders. Phylogenetic trees were generated using parsimony analysis, and support for the different tree structures was evaluated by bootstrapping. The analysis was performed with NGF, BDNF, or NT-3 sequence data used individually as well as with the three neurotrophins in a combined matrix, thereby simultaneously considering phylogenetic information from three separate genes. The results showed that the monotreme neurotrophin sequences associate to either therian or bird neurotrophin sequences and suggests that the monotremes are not necessarily related closer to therians than to birds. Furthermore, the results confirmed the present classification of four Australasian marsupial orders based on morphological characters, and suggested a phylogenetic relationship where Dasyuromorphia is related closest to Peramelemorphia followed by Notoryctemorphia and Diprotodontia. These studies show that sequence data from neurotrophins are well suited for phylogenetic analysis of mammals and that neurotrophins can resolve basal relationships in the evolutionary tree. Received: 27 January 1997 / Accepted: 20 March 1997  相似文献   

20.
The NAD(P)-dependent malate (L-MalDH) and NAD-dependent lactate (L-LDH) form a large super-family that has been characterized in organisms belonging to the three domains of life. In the first part of this study, the group of [LDH-like] L-MalDH, which are malate dehydrogenases resembling lactate dehydrogenase, were analyzed and clearly defined with respect to the other enzymes. In the second part, the phylogenetic relationships of the whole super-family were presented by taking into account the [LDH-like] L-MalDH. The inferred tree unambiguously shows that two ancestral genes duplications, and not one as generally thought, are needed to explain both the distribution into two enzymatic functions and the observation of three main groups within the super-family: L-LDH, [LDH-like] L-MalDH, and dimeric L-MalDH. In addition, various cases of functional changes within each group were observed and analyzed. The direction of evolution was found to always be polarized: from enzymes with a high stringency of substrate recognition to enzymes with a broad substrate specificity. A specific phyletic distribution of the L-LDH, [LDH-like] L-MalDH, and dimeric L-MalDH over the Archaeal, Bacterial, and Eukaryal domains was observed. This was analyzed in the light of biochemical, structural, and genomic data available for the L-LDH, [LDH-like] L-MalDH, and dimeric L-MalDH. This analysis led to the elaboration of a refined evolutionary scenario of the super-family, in which the selection of L-LDH and the fate of L-MalDH during mitochrondrial genesis are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号