首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genomic DNA sequences of humans and chimpanzees differ by only 1.24%. Recently, however, substantial differences in gene-expression patterns between the two species have been revealed. In this article, we investigate the genomic distribution of such differences. Besides confirming previous findings about the evolution of sex chromosomes and duplications, we show that chromosomal rearrangements are associated with increased gene-expression differences in the brain and that rearrangements can have both direct and indirect effects on the expression of linked genes. In addition, our results are consistent with a role for some rearrangements in the original speciation events that separated the human and chimpanzee lineages.  相似文献   

2.
The genomic evolution and causes of phenotypic variation among humans and great apes remain largely unknown, although the phylogenetic relationships among them have been extensively explored. Previous studies that focus on differences at the amino acid and nucleotide sequence levels have revealed a high degree of similarity between humans and chimpanzees, suggesting that other types of genomic change may have contributed to the relatively large phenotypic differences between them. For example, the activity of long interspersed element 1 (LINE-1) retrotransposons may impose significant changes on genomic structure and function and, consequently, on phenotype. Here we investigate the relative rates of LINE-1 amplification in the lineages leading to humans, bonobos (Pan paniscus), and chimpanzees (P. troglodytes). Our data indicate that LINE-1 insertions have accumulated at significantly greater rates in bonobos and chimpanzees than in humans, provide insights into the timing of major LINE-1 amplification events during great ape evolution, and identify a Pan-specific LINE-1 subfamily.  相似文献   

3.
The gut microbiota plays a key role in the maintenance of healthy gut function as well as many other aspects of health. High-throughput sequence analyses have revealed the composition of the gut microbiota, showing that there is a core signature to the human gut microbiota, as well as variation in its composition between people. The gut microbiota of animals is also being investigated. We are interested in the relationship between bacterial taxa of the human gut microbiota and those in the gut microbiota of domestic and semi-wild animals. While it is clear that some human gut bacterial pathogens come from animals (showing that human – animal transmission occurs), the extent to which the usually non-pathogenic commensal taxa are shared between humans and animals has not been explored. To investigate this we compared the distal gut microbiota of humans, cattle and semi-captive chimpanzees in communities that are geographically sympatric in Uganda. The gut microbiotas of these three host species could be distinguished by the different proportions of bacterial taxa present. We defined multiple operational taxonomic units (OTUs) by sequence similarity and found evidence that some OTUs were common between human, cattle and chimpanzees, with the largest number of shared OTUs occurring between chimpanzees and humans, as might be expected with their close physiological similarity. These results show the potential for the sharing of usually commensal bacterial taxa between humans and other animals. This suggests that further investigation of this phenomenon is needed to fully understand how it drives the composition of human and animal gut microbiotas.  相似文献   

4.
Compared to our closest living and extinct relatives, humans have a large, specialized, and complex brain embedded in a uniquely shaped braincase. Here, we quantitatively compare endocranial shape changes during ontogeny in humans and chimpanzees. Identifying shared and unique aspects in developmental patterns of these two species can help us to understand brain evolution in the hominin lineage.Using CT scans of 58 humans and 60 chimpanzees varying in age from birth to adulthood, we generated virtual endocasts to measure and analyze 29 three-dimensional endocranial landmarks and several hundred semilandmarks on curves and the endocranial surface; these data were then analyzed using geometric morphometric methods.The ontogenetic shape trajectories are nonlinear for both species, which indicates several developmental phases. Endocranial shape is already distinct at birth and there is no overlap between the two species throughout ontogeny. While some aspects of the pattern of endocranial shape change are shared between humans and chimpanzees, the shape trajectories differ substantially directly after birth until the eruption of the deciduous dentition: in humans but not in chimpanzees, the parietal and cerebellar regions expand relatively (contributing to neurocranial globularity) and the cranial base flexes within the first postnatal year when brain growth rates are high. We show that the shape changes associated with this early “globularization phase” are unique to humans and do not occur in chimpanzees before or after birth.  相似文献   

5.
The Rhesus (Rh) blood group system in humans is encoded by two genes with high sequence homology. These two genes, namely, RHCE and RHD, have been implied to be duplicated during evolution. However, the genomic organization of Rh genes in chimpanzees and other nonhuman primates has not been precisely studied. We analyzed the arrangement of the Rh genes of chimpanzees (Pan troglodytes) by two-color fluorescence in situ hybridization on chromatin DNA fibers (fiber-FISH) using two genomic DNA probes that respectively contain introns 3 and 7 of human RH genes. Among the five chimpanzees studied, three were found to be homozygous for the two-Rh-gene type, in an arrangement of Rh (5'-->3') - Rh (3'<--5'). Although a similar gene arrangement can be detected in the RH gene locus of typical Rh-positive humans, the distance between the two genes in chimpanzees was about 50 kb longer than that in humans. The remaining two chimpanzees were homozygous for a four-Rh-gene type, in an arrangement of Rh (5'-->3') - Rh (3'<--5') - Rh (3'<--5') - Rh (3'<--5') within a region spanning about 300 kb. This four-Rh-gene type has not been detected in humans. Further analysis of other great apes showed different gene arrangements: a bonobo was homozygous for the three-Rh-gene type; a gorilla was heterozygous for the one-Rh- and two-Rh-gene types; an orangutan was homozygous for the one-Rh-gene type. Our findings on the intra- and interspecific genomic variations in the Rh gene locus in Hominoids would shed further light on reconstructing the genomic pathways of Rh gene duplication during evolution.  相似文献   

6.
Transposable genetic elements are abundant in the genomes of most organisms, including humans. These endogenous mutagens can alter genes, promote genomic rearrangements, and may help to drive the speciation of organisms. In this study, we identified almost 11,000 transposon copies that are differentially present in the human and chimpanzee genomes. Most of these transposon copies were mobilized after the existence of a common ancestor of humans and chimpanzees, approximately 6 million years ago. Alu, L1, and SVA insertions accounted for >95% of the insertions in both species. Our data indicate that humans have supported higher levels of transposition than have chimpanzees during the past several million years and have amplified different transposon subfamilies. In both species, approximately 34% of the insertions were located within known genes. These insertions represent a form of species-specific genetic variation that may have contributed to the differential evolution of humans and chimpanzees. In addition to providing an initial overview of recently mobilized elements, our collections will be useful for assessing the impact of these insertions on their hosts and for studying the transposition mechanisms of these elements.  相似文献   

7.
In recent years, extended altruism towards unrelated group members has been proposed to be a unique characteristic of human societies. Support for this proposal seemingly came from experimental studies on captive chimpanzees that showed that individuals were limited in the ways they shared or cooperated with others. This dichotomy between humans and chimpanzees was proposed to indicate an important difference between the two species, and one study concluded that “chimpanzees are indifferent to the welfare of unrelated group members”. In strong contrast with these captive studies, consistent observations of potentially altruistic behaviors in different populations of wild chimpanzees have been reported in such different domains as food sharing, regular use of coalitions, cooperative hunting and border patrolling. This begs the question of what socio-ecological factors favor the evolution of altruism. Here we report 18 cases of adoption, a highly costly behavior, of orphaned youngsters by group members in Taï forest chimpanzees. Half of the adoptions were done by males and remarkably only one of these proved to be the father. Such adoptions by adults can last for years and thus imply extensive care towards the orphans. These observations reveal that, under the appropriate socio-ecologic conditions, chimpanzees do care for the welfare of other unrelated group members and that altruism is more extensive in wild populations than was suggested by captive studies.  相似文献   

8.
With the release of the chimpanzee genomic database, much work has been accomplished to understand more fully the closest related species to humans. This study investigates the cytochrome P450 3A (CYP3A) subfamily and examines differences which may be expected between chimpanzees and humans in regards to CYP3A metabolism. A previous publication had reported the presence of five putative chimpanzee CYP3A isoforms, as compared to the four in humans (Williams ET et al., Mol Phylogenet Evol 33, 300–8). Based on the previous report, the chimpanzee CYP3A5 should have had a different C-terminus than its human counterpart; therefore, CYP3A5 and CYP3A67 were cloned. The CYP3A5 clone obtained disputes the previous prediction and confirms that the nucleotide similarity between the two species is 99.7%. While CYP3A67 is most closely related to CYP3A7, with significant differences in the amino acid sequences. Also, the mRNA expression of CYP3A67 can rival the expression of CYP3A4 in the tissues analyzed. CYP3A7 was not found to be expressed in any chimpanzee tissue examined. Total CYP3A protein expression was not significantly different between chimpanzees and humans. Metabolism assays using benzphetamine and erythromycin with chimpanzee liver microsomes did not reveal major differences between chimpanzees and humans. In conclusion, adult CYP3A metabolism may not be significantly different between chimpanzees and humans.  相似文献   

9.
The human Rh blood-group system is encoded by two homologous genes,RhD andRhCE. TheRH genes in gorillas and chimpanzees were investigated to delineate the phylogeny of the humanRH genes. Southern blot analysis with an exon 7-specific probe suggested that gorillas have more than twoRH genes, as has recently been reported for chimpanzees. Exon 7 was well conserved between humans, gorillas, and chimpanzees, although the exon 7 nucleotide sequences from gorillas were more similar to the humanD gene, whereas the nucleotide sequences of this exon in chimpanzees were more similar to the humanCE gene. The intron between exon 4 and exon 5 is polymorphic and can be used to distinguish the humanD gene from theCE gene. Nucleotide sequencing revealed that the basis for the intron polymorphism is anAlu element inCE which is not present in theD gene. Examination of gorilla and chimpanzee genomic DNA for this intron polymorphism demonstrated that theD intron was present in all the chimpanzees and in all but one gorilla. TheCE intron was found in three of six gorillas, but in none of the seven chimpanzees. Sequence data suggested that theAlu element might have previously been present in the chimpanzeeRH genes but was eliminated by excision or recombination. Conservation of theRhD gene was also apparent from the complete identity between the 3′-noncoding region of the human D cDNA and a gorilla genomic clone, including anAlu element which is present in both species. The data suggest that at least twoRH genes were present in a common ancestor of humans, chimpanzees, and gorillas, and that additionalRH gene duplication has taken place in gorillas and chimpanzees. TheRhCE gene appears to have diverged more thanRhD among primates. In addition, theRhD gene deletion associated with the Rh-negative phenotype in humans seems to have occurred after speciation. Correspondence to: C.M. Westhoff  相似文献   

10.
The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.  相似文献   

11.
We observed grips by the hand during locomotor and manipulative behavior of captive chimpanzees to improve our ability to interpret differences between chimpanzees and humans in hand morphology that are not easily explained by current behavioral data. The study generated a new classification of grips,which takes into account three elements of precision and power gripping that appear to distinguish between the chimpanzees and humans, and which have not been explored previously in relation to hand morphology. These elements are (1) the relative force of the precision grips (pinch versus hold), (2) the relative ability to translate and rotate objects by the thumb and fingers (precision handling), and (3) the relative ability to orient a cylindrical object so that it functions effectively as an extension of the forearm (power squeeze). We recommend that this classification be incorporated into protocols for field and laboratory studies of nonhuman primate manipulative behavior, in order to test our prediction that these three elements clearly distinguish humans from chimpanzees and other nonhuman primates. The results of this test will have direct bearing upon decisions as to which grips (with their associated behaviors) are most likely to guide us through kinematic and kinetic analysis to possible explanations for morphological differences between humans and other species. These explanations, in turn, are fundamental to our ability to discern evidence for potential grips and tool behaviors in the manual morphology of fossil hominids.  相似文献   

12.
It has been proposed that human cooperation is unique among animals for its scale and complexity, its altruistic nature and its occurrence among large groups of individuals that are not closely related or are even strangers. One potential solution to this puzzle is that the unique aspects of human cooperation evolved as a result of high levels of lethal competition (i.e. warfare) between genetically differentiated groups. Although between-group migration would seem to make this scenario unlikely, the plausibility of the between-group competition model has recently been supported by analyses using estimates of genetic differentiation derived from contemporary human groups hypothesized to be representative of those that existed during the time period when human cooperation evolved. Here, we examine levels of between-group genetic differentiation in a large sample of contemporary human groups selected to overcome some of the problems with earlier estimates, and compare them with those of chimpanzees. We find that our estimates of between-group genetic differentiation in contemporary humans are lower than those used in previous tests, and not higher than those of chimpanzees. Because levels of between-group competition in contemporary humans and chimpanzees are also similar, these findings suggest that the identification of other factors that differ between chimpanzees and humans may be needed to provide a compelling explanation of why humans, but not chimpanzees, display the unique features of human cooperation.  相似文献   

13.
Gene diversity patterns at 10 X-chromosomal loci in humans and chimpanzees   总被引:5,自引:1,他引:4  
We have investigated the pattern and extent of nucleotide diversityin 10 X-chromosomal genes where mutations are known to causemental retardation in humans. For each gene, we sequenced theentire coding region from cDNA in humans, chimpanzees, and orangutans,as well as about 3 kb of genomic DNA in 20 humans sampled worldwideand in 10 chimpanzees representing two "subspecies." Overallnucleotide diversity in these genes is about twofold lower inhumans than in chimpanzees, and nucleotide diversity withinand between species is low, suggesting that a high level offunctional constraint acts on these genes. Strikingly, we findthat a summary of the allele frequency spectrum is significantlycorrelated in humans and chimpanzees, perhaps reflecting verysimilar levels of constraint at these genes in the two species.A possible exception is FMR2, which shows a higher number ofnonsynonymous than synonymous substitutions on the human lineage,suggesting the action of positive selection.  相似文献   

14.
Ying Wang  Bruce Rannala 《Genetics》2014,198(4):1621-1628
Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies.  相似文献   

15.
It has been hypothesized that neurological adaptations associated with evolutionary selection for throwing may have served as a precursor for the emergence of language and speech in early hominins. Although there are reports of individual differences in aimed throwing in wild and captive apes, to date there has not been a single study that has examined the potential neuroanatomical correlates of this very unique tool-use behaviour in non-human primates. In this study, we examined whether differences in the ratio of white (WM) to grey matter (GM) were evident in the homologue to Broca's area as well as the motor-hand area of the precentral gyrus (termed the KNOB) in chimpanzees that reliably throw compared with those that do not. We found that the proportion of WM in Broca's homologue and the KNOB was significantly higher in subjects that reliably throw compared with those that do not. We further found that asymmetries in WM within both brain regions were larger in the hemisphere contralateral to the chimpanzee's preferred throwing hand. We also found that chimpanzees that reliably throw show significantly better communication abilities than chimpanzees that do not. These results suggest that chimpanzees that have learned to throw have developed greater cortical connectivity between primary motor cortex and the Broca's area homologue. It is suggested that during hominin evolution, after the split between the lines leading to chimpanzees and humans, there was intense selection on increased motor skills associated with throwing and that this potentially formed the foundation for left hemisphere specialization associated with language and speech found in modern humans.  相似文献   

16.
The evolution of monogamy has been a central question in biological anthropology. An important avenue of research has been comparisons across “socially monogamous” mammals, but such comparisons are inappropriate for understanding human behavior because humans are not “pair living” and are only sometimes “monogamous.” It is the “pair bond” between reproductive partners that is characteristic of humans and has been considered unique to our lineage. I argue that pair bonds have been overlooked in one of our closest living relatives, chimpanzees. These pair bonds are not between mates but between male “friends” who exhibit enduring and emotional social bonds. The presence of such bonds in male–male chimpanzees raises the possibility that pair bonds emerged earlier in our evolutionary history. I suggest pair bonds first arose as “friendships” and only later, in the human lineage, were present between mates. The mechanisms for these bonds were co-opted for male-female bonds in humans.  相似文献   

17.
Despite only approximately 1% difference in genomic DNA sequence, humans and chimpanzees differ considerably in mental and linguistic capabilities, and in susceptibility to some diseases. A recent comparison of gene expression in human and great apes cast some light on the genetic basis of these differences, but more rigorous study is required. Our statistical reanalysis of these microarray data shows that there have indeed been dramatic alterations in the expression of genes in the human brain since the split from chimpanzees, mainly caused by a set of genes with increased (rather than decreased) expression in the human brain.  相似文献   

18.
The transmission of simian immunodeficiency and Ebola viruses to humans in recent years has heightened awareness of the public health significance of zoonotic diseases of primate origin, particularly from chimpanzees. In this study, we analyzed 71 fecal samples collected from 2 different wild chimpanzee (Pan troglodytes) populations with different histories in relation to their proximity to humans. Campylobacter spp. were detected by culture in 19/56 (34%) group 1 (human habituated for research and tourism purposes at Mahale Mountains National Park) and 0/15 (0%) group 2 (not human habituated but propagated from an introduced population released from captivity over 30 years ago at Rubondo Island National Park) chimpanzees, respectively. Using 16S rRNA gene sequencing, all isolates were virtually identical (at most a single base difference), and the chimpanzee isolates were most closely related to Campylobacter helveticus and Campylobacter upsaliensis (94.7% and 95.9% similarity, respectively). Whole-cell protein profiling, amplified fragment length polymorphism analysis of genomic DNA, hsp60 sequence analysis, and determination of the mol% G+C content revealed two subgroups among the chimpanzee isolates. DNA-DNA hybridization experiments confirmed that both subgroups represented distinct genomic species. In the absence of differential biochemical characteristics and morphology and identical 16S rRNA gene sequences, we propose to classify all isolates into a single novel nomenspecies, Campylobacter troglodytis, with strain MIT 05-9149 as the type strain; strain MIT 05-9157 is suggested as the reference strain for the second C. troglodytis genomovar. Further studies are required to determine whether the organism is pathogenic to chimpanzees and whether this novel Campylobacter colonizes humans and causes enteric disease.  相似文献   

19.

Background

Diversity among human leukocyte antigen (HLA) molecules has been maintained by host-pathogen coevolution over a long period of time. Reflecting this diversity, the HLA loci are the most polymorphic in the human genome. One characteristic of HLA diversity is long-term persistence of allelic lineages, which causes trans-species polymorphisms to be shared among closely related species. Modern humans have disseminated across the world after their exodus from Africa, while chimpanzees have remained in Africa since the speciation event between humans and chimpanzees. It is thought that modern humans have recently acquired resistance to novel pathogens outside Africa. In the present study, we investigated HLA alleles that could contribute to this local adaptation in humans and also studied the contribution of natural selection to human evolution by using molecular data.

Results

Phylogenetic analysis of HLA-DRB1 genes identified two major groups, HLA Groups A and B. Group A formed a monophyletic clade distinct from DRB1 alleles in other Catarrhini, suggesting that Group A is a human-specific allelic group. Our estimates of divergence time suggested that seven HLA-DRB1 Group A allelic lineages in humans have been maintained since before the speciation event between humans and chimpanzees, while chimpanzees possess only one DRB1 allelic lineage (Patr-DRB1*03), which is a sister group to Group A. Experimental data showed that some Group A alleles bound to peptides derived from human-specific pathogens. Of the Group A alleles, three exist at high frequencies in several local populations outside Africa.

Conclusions

HLA Group A alleles are likely to have been retained in human lineages for a long period of time and have not expanded since the divergence of humans and chimpanzees. On the other hand, most orthologs of HLA Group A alleles may have been lost in the chimpanzee due to differences in selective pressures. The presence of alleles with high frequency outside of Africa suggests these HLA molecules result from the local adaptations of humans. Our study helps elucidate the mechanism by which the human adaptive immune system has coevolved with pathogens over a long period of time.  相似文献   

20.
A variety of lines of evidence support the idea that neutral evolutionary processes (genetic drift, mutation) have been important in generating cranial differences between Neandertals and modern humans. But how do Neandertals and modern humans compare with other species? And how do these comparisons illuminate the evolutionary processes underlying cranial diversification? To address these questions, we used 27 standard cranial measurements collected on 2524 recent modern humans, 20 Neandertals and 237 common chimpanzees to estimate split times between Neandertals and modern humans, and between Pan troglodytes verus and two other subspecies of common chimpanzee. Consistent with a neutral divergence, the Neandertal versus modern human split-time estimates based on cranial measurements are similar to those based on DNA sequences. By contrast, the common chimpanzee cranial estimates are much lower than DNA-sequence estimates. Apparently, cranial evolution has been unconstrained in Neandertals and modern humans compared with common chimpanzees. Based on these and additional analyses, it appears that cranial differentiation in common chimpanzees has been restricted by stabilizing natural selection. Alternatively, this restriction could be due to genetic and/or developmental constraints on the amount of within-group variance (relative to effective population size) available for genetic drift to act on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号