首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Fcalpha/mu receptor (Fcalpha/muR), a novel Fc receptor for IgA and IgM, is a type I transmembrane protein with an immunoglobulin (Ig)-like domain in the extracellular portion. Although IgA and IgM bind to Fcalpha/muR, the molecular and structural characteristics of the ligand-receptor interactions have been undetermined. Here, we developed twelve monoclonal antibodies (mAbs) against murine Fcalpha/muR by immunizing mice deficient in Fcalpha/muR gene. Eight mAbs totally or partially blocked IgA and IgM bindings to Fcalpha/muR. These blocking mAbs bound to a peptide derived from the Ig-like domain of murine Fcalpha/muR, which is conserved not only in human and rat Fcalpha/muR but also in polymeric Ig receptor (poly-IgR), another Fc receptor for IgA and IgM. These results suggest that IgA and IgM bind to an epitope in the conserved amino acids in the Ig-like domain of Fcalpha/muR as well as poly-IgR.  相似文献   

2.
The pathogenesis of IgA nephropathy (IgAN) may be associated with the mesangial deposition of aberrantly glycosylated IgA1. To identify mediators affected by aberrantly glycosylated IgA1 in cultured human mesangial cells (HMCs), we generated enzymatically modified desialylated and degalactosylated (deSial/deGal) IgA1. The state of deglycosylated IgA1 was confirmed by lectin binding to Helix aspersa (HAA) and Sambucus nigra (SNA). In the cytokine array analysis, 52 proteins were upregulated and 34 were downregulated in HMCs after stimulation with deSial/deGal IgA1. Among them, the secretion of adiponectin was suppressed in HMCs after stimulation with deSial/deGal IgA1. HMCs expressed mRNAs for adiponectin and its type 1 receptor, but not the type 2 receptor. Moreover, we revealed a downregulation of adiponectin expression in the glomeruli of renal biopsy specimens from patients with IgAN compared to those with lupus nephritis. We also demonstrated that aberrantly glycosylated IgA1 was deposited in the mesangium of patients with IgAN by dual staining of HAA and IgA. Moreover, the urinary HAA/SNA ratio of lectin binding was significantly higher in IgAN compared to other kidney diseases. Since adiponectin has anti-inflammatory effects, including the inhibition of adhesion molecules and cytokines, these data suggest that the local suppression of this adipokine by aberrantly glycosylated IgA1 could be involved in the regulation of glomerular inflammation and sclerosis in IgAN.  相似文献   

3.
The Fcalpha/mu receptor (Fcα/μR), a type I transmembrane protein, is an immunoglobulin Fc receptor for both IgA and IgM. Its functions in immune defense are not clear at present. In this work, human Fcα/μR was expressed in CHO, 293T, and COS-7 cells to study its biochemical functions. Fcα/μR expressed by CHO and 293T was only in monomer form in cytoplasma and the monomeric receptor could not bind IgA or IgM. In comparison, Fcα/μR expressed by COS-7 cells had both monomer and dimer forms. The binding assay showed that Fcα/μR expressed by COS-7 cells could bind IgM strongly and IgA weakly, implying that dimeric receptor could be expressed on cell membrane and functioned. The bound IgM could be internalized and the internalization was abolished when the cytoplasmic domain of Fcα/μR was truncated. Therefore, the cytoplasmic portion of human Fcα/μR is required in the internalization.  相似文献   

4.
IgA is the most abundant class of Abs at mucosal surfaces where eosinophils carry out many of their effector functions. Most of the known IgA-mediated functions require interactions with IgA receptors, six of which have been identified in humans. These include the IgA FcR FcalphaRI/CD89 and the receptor for the secretory component, already identified on human eosinophils, the polymeric IgR, the Fcalpha/muR, asialoglycoprotein (ASGP)-R, and transferrin (Tf)R/CD71. In rodents, the existence of IgA receptors on mouse and rat eosinophils remains unclear. We have compared the expression and function of IgA receptors by human, rat, and mouse eosinophils. Our results show that human eosinophils express functional polymeric IgR, ASGP-R, and TfR, in addition to CD89 and the receptor for the secretory component, and that IgA receptors are expressed by rodent eosinophils. Indeed, mouse eosinophils expressed only TfR, whereas rat eosinophils expressed ASGP-R and CD89 mRNA. These results provide a molecular basis for the differences observed between human, rat, and mouse regarding IgA-mediated immunity.  相似文献   

5.
We report the characteristics of CD300LG, a member of the CD300 antigen like family. Its genomic structure is similar in both mouse and human, and at least four isoforms exist in both species. The amino acid sequence of the immunoglobulin (Ig) V like domain of CD300LG showed approximately 35% identity to those of the polymeric Ig receptor (pIgR) and Fcalpha/muR. Interestingly, mouse CD300LG proteins were uniquely expressed on capillary endothelium. Immunoelectron microscopy revealed that mouse CD300LG is localized on both apical and basolateral plasma membranes, as well as on intracellular vesicular structures, in the capillary endothelium. Transcytosis assays using polarized MDCK epithelial cells showed that CD300LG could be transcytosed bidirectionally. Furthermore, CD300LG exogenously expressed on HeLa cells could take up IgA2 and IgM, but not IgG. These results suggest that CD300LG might play an important role in molecular traffic across the capillary endothelium.  相似文献   

6.
Previous studies show that the proliferation of human mesangial cells (HMCs) played a significant part in the pathogenesis of Henoch‐Schönlein purpura nephritis (HSPN). The aim of this study was to explore the proliferation of HMCs induced by IgA1 isolated from the sera of HSP patients. HMCs were cultured in three different types of media, including IgA1 from patients with HSP (HSP IgA1 group), healthy children (healthy IgA1 group) and medium (control group). The proliferation of HMCs incubated with IgA1 was determined by cell counting kit‐8 assay and bromodeoxyuridine incorporation. The expression of ERK1/2 and phosphatidylinositol 3 kinase/protein kinase B/mammalian targets of the rapamycin (PI3K/AKt/mTOR) signals and transferrin receptor (TfR/CD71) was detected with the methods of immunoblotting. The results indicated that the proliferation of HMCs significantly increased in the HSP IgA1 group compared with that in the control group or the healthy IgA1 group (P < 0.001). Moreover, we found that IgA1 isolated from HSP patients activated ERK and PI3K/AKt/mTOR signals, and markedly increased TfR/CD71 expression in HMCs. These effects induced by IgA1 isolated from patients with HSP were inhibited by human TfR polyclonal antibody (hTfR pAb) and soluble human transferrin receptor (sTfR), indicating that IgA1‐induced HMC proliferation and ERK1/2 and PI3K/AKt/mTOR activation were dependent on TfR/CD71 engagement. Altogether, these data suggested that TfR/CD71 overexpression and ERK1/2 and PI3K/AKt/mTOR activation were engaged in HMC proliferation induced by IgA1 from HSP patients, which might be related to the mesangial injury of HSPN.  相似文献   

7.
Immunoglobulin A (IgA) nephropathy or Berger's disease is the most common form of primary glomerulonephritis in the world and one of the first cause of end-stage renal failure. IgA nephropathy is characterized by the accumulation in mesangial areas of immune complexes containing polymeric IgA1. While epidemiology and clinical studies of IgA nephropathy are well established, the mechanism(s) underlying disease development is poorly understood. The pathogenesis of this disease involves the deposition of polymeric and undergalactosylated IgA1 in the mesangium. Quantitative and structural changes of IgA1 play a key role in the development of the disease due to functional abnormalities of two IgA receptors: The FcalphaR (CD89) expressed by blood myeloid cells and the transferrin receptor (CD71) on mesangial cells. Abnormal IgA induce the release of soluble CD89 which is responsible for the formation of circulating IgA complexes. These complexes may be trapped by CD71 that is overexpressed on mesangial cells in IgA nephropathy patients allowing pathogenic IgA complex formation.  相似文献   

8.
Complement activation contributes to tissue injury in various forms of glomerulopathy and is characterized by deposition of complement components, which accelerates the progression of chronic renal damage. We recently reported that complement 3 (C3), a critical component of the complement system, is associated with the synthetic phenotype of vascular smooth muscle cells. It is possible that C3 stimulates mesangial cells to assume the synthetic phenotype to, in turn, induce glomerular injury and sclerosis. We investigated the role of C3 in the growth and phenotype of mesangial cells. Cultured human mesangial cells (HMCs) expressed C3 mRNA and protein, and levels were increased in response to IFN-gamma and TNF-alpha. HMCs also expressed C3a receptor mRNA and protein. Exogenous C3a stimulated DNA synthesis in HMCs in a dose-dependent manner. C3a decreased expression h-caldesmon mRNA, a marker of the contractile phenotype, and increased the expression of osteopontin, matrix Gla, and collagen type1 alpha1 (collagen IV) mRNAs, which are markers of the synthetic phenotype. C3a decreased expression of alpha-smooth muscle actin in HMCs. Small interfering RNA (siRNA) targeting C3 reduced the DNA synthesis and proliferation of HMCs, increased expression of h-caldesmon mRNA, and decreased expression of osteopontin, matrix Gla, and collagen IV mRNAs in HMCs. These results indicate that C3 causes HMCs to convert to the synthetic phenotype and stimulates growth of mesangial cells, suggesting that C3 may play an important role in phenotypic regulation of mesangial cells in renal diseases.  相似文献   

9.
IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27Kip1, p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27Kip1 at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN.  相似文献   

10.
Depositions of IgA in the renal glomerular mesangial area are a hallmark of IgA nephropathy, and are thought to be crucial for the onset of inflammation processes in IgA nephropathy. In this report we show that human mesangial cells (MC) in vitro bind IgA and that binding of IgA enhances the production of IL-6 by MC. Furthermore we show that the size of IgA is crucial in its capability to enhance IL-6 production. Monomeric IgA does not affect basic IL-6 production, whereas dimeric and polymeric IgA enhance IL-6 production up to 3- to 9-fold respectively. Additional studies demonstrate that enhanced IL-6 production by MC is not accompanied by increased proliferation of human mesangial cells, a finding which is distinct from that found with rat mesangial cells. Taken together, these fmdings suggest that deposition of dimeric and polymeric IgA in the mesangial area of human kidneys in IgA nephropathy may amplify local inflammation.  相似文献   

11.
FcalphaRI, the receptor specific for the Fc region of immunoglobulin A (IgA), is responsible for IgA-mediated phagocytosis, oxidative burst, and antibody-dependent cellular cytotoxicity. Using the techniques of analytical ultracentrifugation and equilibrium gel-filtration, we show that two FcalphaRI molecules bind to a single Fcalpha homodimer. Surface plasmon resonance studies confirm the 2:1 stoichiometry of binding, with equilibrium dissociation constants of 176 nM and 431 nM for the first and second binding events, respectively. The binding affinity decreases at acidic pH in a manner consistent with protonation of a single histidine residue in the binding site. A thermodynamic analysis indicates that the histidine residue does not participate in a salt-bridge in the complex; in fact, less than 10% of the free energy of binding was contributed by electrostatic interactions. The bivalent, pH-dependent interaction between FcalphaRI and IgA has important implications for cytokine-dependent phagocytosis of IgA and the FcalphaRI-mediated degradation or recycling of IgA.  相似文献   

12.
T560, a mouse B lymphoma that originated in gut-associated lymphoid tissue, expresses receptors that bind dimeric IgA and IgM in a mutually inhibitory manner but have little affinity for monomeric IgA. Evidence presented in this paper indicates that the receptor is poly-Ig receptor (pIgR) known in humans and domestic cattle to bind both IgA and IgM. The evidence includes the demonstration that binding of IgM is J chain dependent, and that pIg-precipitated receptor has an appropriate Mr of 116-120 kDa and can be detected on immunoblots with specific rabbit anti-mouse pIgR. Overlapping RT-PCR performed using template mRNA from T560 cells and oligonucleotide primer pairs designed from the published sequence of mouse liver pIgR indicate that T560 cells express mRNA virtually identical with that of the epithelial cell pIgR throughout its external, transmembrane, and intracytoplasmic coding regions. Studies using mutant IgAs suggest that the Calpha2 domain of dimeric IgA is not involved in high-affinity binding to the T560 pIgR. Inasmuch as this mouse B cell pIgR binds IgM better than IgA, it is similar to human pIgR and differs from rat, mouse, and rabbit epithelial cell pIgRs that bind IgA but not IgM. Possible explanations for this difference are discussed. All clones of T560 contain some cells that spontaneously secrete both IgG2a and IgA, but all of the IgA recoverable from the medium and from cell lysates is monomeric; it cannot be converted to secretory IgA by T560 cells.  相似文献   

13.
Pathogenic significance of IgA receptor interactions in IgA nephropathy   总被引:3,自引:0,他引:3  
IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, frequently progresses to renal failure. The pathogenesis of this disease involves the deposition of undergalactosylated IgA1 complexes in the glomerular mesangium. How the IgA1 complexes are generated and why they are deposited in the mesangium remains unclear. We propose a model wherein two types of IgA receptors participate in sequential steps to promote the development of IgAN, with FcalphaRI (CD89) being initially involved in the formation of circulating IgA-containing complexes and, subsequently, transferrin receptor (CD71) in mediating mesangial deposition of IgA1 complexes.  相似文献   

14.
Whether IgA nephropathy is attributable to mesangial IgA is unclear as there is no correlation between intensity of deposits and extent of glomerular injury and no clear mechanism explaining how these mesangial deposits induce hematuria and subsequent proteinuria. This hinders the development of a specific therapy. Thus, precise events during deposition still remain clinical challenge to clarify. Since no study assessed induction of IgA nephropathy by nephritogenic IgA, we analyzed sequential events involving nephritogenic IgA from IgA nephropathy-prone mice by real-time imaging systems. Immunofluorescence and electron microscopy showed that serum IgA from susceptible mice had strong affinity to mesangial, subepithelial, and subendothelial lesions, with effacement/actin aggregation in podocytes and arcade formation in endothelial cells. The deposits disappeared 24-h after single IgA injection. The data were supported by a fluorescence molecular tomography system and real-time and 3D in vivo imaging. In vivo imaging showed that IgA from the susceptible mice began depositing along the glomerular capillary from 1 min and accumulated until 2-h on the first stick in a focal and segmental manner. The findings indicate that glomerular IgA depositions in IgAN may be expressed under the balance between deposition and clearance. Since nephritogenic IgA showed mesangial as well as focal and segmental deposition along the capillary with acute cellular activation, all glomerular cellular elements are a plausible target for injury such as hematuria.  相似文献   

15.
Binding and transport of polymeric Igs (pIgA and IgM) across epithelia is mediated by the polymeric Ig receptor (pIgR), which is expressed on the basolateral surface of secretory epithelial cells. Although an Fc receptor for IgA (FcalphaR) has been identified on myeloid cells and some cultured mesangial cells, the expression of an FcalphaR on epithelial cells has not been described. In this study, binding of IgA to a human epithelial line, HT-29/19A, with features of differentiated colonic epithelial cells, was examined. Radiolabeled monomeric IgA (mIgA) showed a dose-dependent, saturable, and cation-independent binding to confluent monolayers of HT-29/19A cells. Excess of unlabeled mIgA, but not IgG or IgM, competed for the mIgA binding, indicating that the binding was IgA isotype-specific and was not mediated by the pIgR. The lack of competition by asialoorosomucoid and the lack of requirement for divalent cations excluded the possibility that IgA binding to HT-29/19A cells was due to the asialoglycoprotein receptor or beta-1, 4-galactosyltransferase, previously described on HT-29 cells. Moreover, the FcalphaR (CD89) protein and message were undetectable in HT-29/19A cells. FACS analysis of IgA binding demonstrated two discrete populations of HT-29/19 cells, which bound different amounts of mIgA. IgA binding to other colon carcinoma cell lines was also demonstrated by FACS analysis, suggesting that an IgA receptor, distinct from the pIgR, asialoglycoprotein receptor, galactosyltransferase, and CD89 is constitutively expressed on cultured human enterocytes. The function of this novel IgA receptor in mucosal immunity remains to be elucidated.  相似文献   

16.
Molecular basis of IgA nephropathy   总被引:4,自引:0,他引:4  
IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide and remains an important cause of end-stage renal failure. However, the basic molecular mechanism(s) underlying abnormal IgA synthesis, selective mesangial deposition with ensuing mesangial cell proliferation and extracellular matrix expansion remains poorly understood. Notably, the severity of tubulointerstitial lesions better predicts the renal progression than the degree of glomerular lesions. The task of elucidating the molecular basis of IgAN is made especially challenging by the fact that both environmental and genetic components likely contribute to the development and progression of IgAN. This review will summarize the earlier works on the structure of the IgA molecule, mechanisms of mesangial IgA deposition and pathophysiologic effects of IgA on mesangial cells following mesangial deposition. Recently, a series of important advances in the area of communication between the glomerular mesangium and renal tubular cells have emerged. These novel findings regarding the molecular pathogenesis of IgAN will be helpful in designing future directions for therapy.  相似文献   

17.
《Epigenetics》2013,8(5):396-401
We have previously identified differentially expressed genes in cell models of diabetic nephropathy and renal biopsies. Here we have performed quantitative DNA methylation profiling in cell models of diabetic nephropathy. Over 3,000 CpG units in the promoter regions of 192 candidate genes were assessed in unstimulated human mesangial cells (HMCs) and proximal tubular epithelial cells (PTCs) compared to HMCs or PTCs exposed to appropriate stimuli. A total of 301 CpG units across 38 genes (~20%) were identified as differentially methylated in unstimulated HMCs versus PTCs. Analysis of amplicon methylation values in unstimulated versus stimulated cell models failed to demonstrate a >20% difference between amplicons. In conclusion, our results demonstrate that (1) specific DNA methylation signatures are present in HMCs and PTCs, and (2) standard protocols for exposure of renal cells to stimuli that alter gene expression may be insufficient to replicate possible alterations in DNA methylation profiles in diabetic nephropathy.  相似文献   

18.
TRIM27 (tripartite motif-containing 27) is a member of the TRIM (tripartite motif) protein family and participates in a variety of biological processes. Some research has reported that TRIM27 was highly expressed in certain kinds of carcinoma cells and tissues and played an important role in the proliferation of carcinoma cells. However, whether TRIM27 takes part in the progression of lupus nephritis (LN) especially in cells proliferation remains unclear. Our study revealed that the overexpression of TRIM27 was observed in the kidneys of patients with LN, lupus mice and mesangial cells exposed to LN plasma which correlated with the proliferation of mesangial cells and ECM (extracellular matrix) deposition. Downregulation of TRIM27 expression suppressed the proliferation of mesangial cells and ECM accumulation in MRL/lpr mice and cultured human mesangial cells (HMCs) by regulating the FoxO1 pathway. Furthermore, the overexpression of FoxO1 remarkably decreased HMCs proliferation level and ECM accumulation in LN plasma-treated HMCs. In addition, the protein kinase B (Akt) signal pathway inhibitor LY294002 significantly reduced the expression of TRIM27 and inhibited the dysfunction of mesangial cells. These above data suggested that TRIM27 mediated abnormal mesangial cell proliferation in kidney of lupus and might be the potential target for treating mesangial cell proliferation of lupus nephritis.  相似文献   

19.
BackgroundOur previous study suggested that palmitate (PA) induces human glomerular mesangial cells (HMCs) fibrosis. However, the mechanism is not fully understood. Recent studies suggested that transient receptor potential canonical channel 6 (TRPC6)/nuclear factor of activated T cell 2 (NFAT2) played an important role in renal fibrosis. Moreover, cluster of differentiation 36 (CD36) regulated the synthesis of TPRC6 agonist diglyceride. In the present study, we investigated whether PA induced HMCs fibrosis via TRPC6/NFAT2 mediated by CD36.MethodsA type 2 diabetic nephropathy (DN) model was established in Sprague Dawley rats, and HMCs were stimulated with PA. Lipid accumulation and free fatty acid (FFA) uptake were measured. The expression levels of TGF-β1, p-Smad2/3, FN, TRPC6, NFAT2 and CD36 were evaluated. The intracellular calcium concentration ([Ca2+]i) was assessed.ResultsFFA were elevated in type 2 DN rats with kidney fibrosis in addition to NFAT2 and CD36 expression. In vitro, PA induced HMCs fibrosis, [Ca2+]i elevation and NFAT2 activation. SKF96365 or TRPC6-siRNA could attenuate PA-induced HMCs damage. By contrast, the TRPC6 activator showed the opposite effect. Moreover, NFAT2-siRNA also suppressed PA-induced HMCs fibrosis. CD36 knockdown inhibited the PA-induced [Ca2+]i elevation and NFAT2 expression. In addition, long-term treatment with PA decreased TRPC6 expression in HMCs.ConclusionThe results of this study demonstrated that PA could induce the activation of the [Ca2+]i/NFAT2 signaling pathway through TRPC6, which led to HMCs fibrosis. Although activation of TRPC6 attributed to CD36-mediated lipid deposition, long-term stimulation of PA may lead to negative feedback on the expression of TPRC6.  相似文献   

20.
The complex cyto-architecture of the podocyte is critical for glomerular permselectivity. The present study characterizes the expression of nestin, an intermediate filament protein, in human kidneys. In normal kidneys, nestin was detected at the periphery of glomerular capillary loops. Colabeling showed nestin was expressed in WT1-positive cells. Within the podocyte, nestin immunoreactivity was present in the cell body and primary process. This was supported by immunoelectron microscopy. Nestin also colocalized with vimentin in the periphery of capillary loops but not in the mesangium. Nestin was not detected in other structures of the adult human kidney. To determine the potential role of nestin in proteinuria, nestin was examined in kidney biopsies from patients with or without proteinuria. These patients were diagnosed with IgA nephropathy with mild mesangial expansion but without proteinuria, IgA nephropathy with proteinuria, membranous nephropathy (MN), and focal segmental glomerular sclerosis (FSGS). The distribution of nestin in these biopsies was similar to that in the normal kidney. Semiquantitative analysis of immunostaining showed that glomerular nestin expression in IgA nephropathy without proteinuria was not different from normal kidney; however, nestin expression in kidneys of patients with IgA nephropathy and proteinuria, or MN and FSGS with proteinuria was significantly reduced compared with normal kidney (P < 0.01). Reduced nestin mRNA expression in the patients with IgA nephropathy with proteinuria and FSGN was also observed by quantitative real-time PCR. These studies suggest that nestin may play an important role in maintaining normal podocyte function in the human kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号