首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular tumour markers may have potential role in the follow-up of patients with malignant melanoma, in therapy monitoring and in prediction of prognosis. In our article circulating tumour markers in melanoma (melanoma inhibitory activity, lipid bound sialic acid, neuron specific enolase, TA90 immune complex, S-100B protein, 5-S-cysteinyldopa, tyrosinase, cytokines, metalloproteinases, LDH) were reviewed. Among laboratory melanoma markers the S-100B protein is the most investigated. S-100B protein has high specificity, appropriate sensitivity and proved to be significant prognostic factor independent from stages. High serum values are associated with shorter survival. However, before S-100B monitoring immunohistochemistry for the detection of S-100B is required. In the case of malignant melanomas with low expression serum S-100B monitoring may not be sensitive enough to follow disease progression. Although the serum concentration of 5-S-cysteinyldopa did not prove to be independent prognostic factor in our previous studies comprising the highest patient number in the literature, the marker was suggested for therapy monitoring. The survival analysis indicated that the elevated 5-S-cysteinyldopa level predicts shorter survival. In spite of the calculated low correlation between the two markers, parallel elevation of S-100B protein and 5-S-cysteinyldopa indicated shorter survival. On the basis of the literature LDH is the most appropriate tumour marker in stage IV to predict prognosis, but its sensitivity and specificity could not achieve that of S-100B protein. S-100B and LDH proved to be similarly reliable in respect to the clinical outcome. Determination of serum concentration of MIA and tyrosinase are also reliable markers in malignant melanoma. The other investigated markers are not well known yet or do not provide useful information to the clinicians.  相似文献   

2.
S100B is a prognostic marker for malignant melanoma. Increasing S100B levels are predictive of advancing disease stage, increased recurrence, and low overall survival in malignant melanoma patients. Using S100B overexpression and shRNAS100B knockdown studies in melanoma cell lines, elevated S100B was found to enhance cell viability and modulate MAPK signaling by binding directly to the p90 ribosomal S6 kinase (RSK). S100B-RSK complex formation was shown to be Ca2+-dependent and to block ERK-dependent phosphorylation of RSK, at Thr-573, in its C-terminal kinase domain. Additionally, the overexpression of S100B sequesters RSK into the cytosol and prevents it from acting on nuclear targets. Thus, elevated S100B contributes to abnormal ERK/RSK signaling and increased cell survival in malignant melanoma.  相似文献   

3.
Ndr is a nuclear serine/threonine protein kinase that belongs to a subfamily of kinases identified as being critical for the regulation of cell division and cell morphology. The regulatory mechanisms that control Ndr activity have not been characterized previously. In this paper, we present evidence that Ndr is regulated by EF-hand calcium-binding proteins of the S100 family, in response to changes in the intracellular calcium concentration. In vitro, S100B binds directly to and activates Ndr in a Ca2+-dependent manner. Moreover, Ndr is recovered from cell lysates in anti-S100B immunoprecipitates. The region of Ndr responsible for interaction with Ca2+/S100B is a basic/hydrophobic motif within the N-terminal regulatory domain of Ndr, and activation of Ndr by Ca2+/S100B is inhibited by a synthetic peptide derived from this region. In cultured cells, Ndr is rapidly activated following treatment with Ca2+ ionophore, and this activation is dependent upon the identified Ca2+/S100B-binding domain. Finally, Ndr activity is inhibited by W-7 in melanoma cells overexpressing S100B, but is unaffected by W-7 in melanoma cells that lack S100B. These results suggest that Ndr is regulated at least in part by changes in the intracellular calcium concentration, through binding of S100 proteins to its N-terminal regulatory domain.  相似文献   

4.
Melanoma is the most malignant type of all skin neoplasms. Its worldwide incidence has steadily increased during the past decades, suggesting a probable melanoma ‘epidemic’. Although current clinical, morphologic, and histopathologic methods provide insights into disease behavior and outcome, melanoma is still an unpredictable disease. Once in an advanced stage, it remains a disastrous affliction with scarce therapeutic options. Therefore, significant efforts need to be made in finding informative biomarkers or surrogate markers that could aid or improve early diagnosis of melanoma, its correct staging, the discrimination of other pathological conditions as well as indicate patients’ prognosis or the most appropriate therapeutic regimes. Ideally these markers are secreted into body fluids and easily amenable to the design of non-invasive clinical tests. A critical view on the current debate on serologic protein markers, e.g., lactate dehydrogenase, tyrosinase, and melanoma inhibiting activity, and some selected non-protein markers, e.g., 5-S-cysteinyl-dopa and circulating nucleic acids, will be offered and novel innovative approaches currently being explored will be discussed. Special emphasis is put on the S100 family of calcium binding proteins that is more and more emerging as a potentially important group of both molecular key players and biomarkers in the etiology, progression, manifestation, and therapy of neoplastic disorders, including malignant melanoma. Notably, S100B and, possibly, other S100 proteins like S100A4 are assumed to fulfill requirements which make them strong biomarker candidates in melanoma. Moreover, S100 proteins receive attention as possible targets of therapeutic intervention moving closer to clinical impact.  相似文献   

5.
S100B (S100β) and S100A6 (calcyclin) are two 10-kDa Ca2+- and Zn2+-binding proteins coexpressed in melanoma and cell-cycle regulated. These proteins are members of the S100 subfamily and are thought to exert their function through interaction with intracellular target proteins. In order to search for potential target proteins interacting with S100B, we used a yeast two-hybrid strategy with human S100B as bait to screen a human brain cDNA library. The fusion proteins interacting with the S100B bait were identified as S100B, S100A1, and S100A6. This indicates the potential of S100B to form homodimers and heterodimers with other members of the S100 subfamily. By Northern and Western blotting, S100B and S100A6 were shown to be expressed at high levels in a panel of human melanoma cell lines. S100B and S100A6 were coimmunoprecipitated from melanoma cell lysates in the presence of 100 μM Zn2+. Confocal microscopy demonstrated that both proteins were distributed throughout the cytoplasm and concentrated in the nucleus. The demonstration of an association and colocalization of S100B and S100A6 in melanoma supports the possibility that an S100B/S100A6 heterodimer plays a functional role in these cells.  相似文献   

6.
7.
8.
Melanoma incidences have increased over the last few decades and metastatic melanoma is one of the hardest malignancies to treat. Thus, novel approaches are needed for an effective management of melanoma. Interferon-α2b (IFN), an immunomodulatory cytokine commonly used in melanoma treatment, has shown marginal efficacy and often results in discontinuation of therapy due to toxicity. We earlier demonstrated that epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, caused cell cycle arrest and apoptosis of human melanoma cells via modulation in cki-cyclin-cdk machinery and Bcl-2 family proteins. This study was undertaken to determine if EGCG could enhance the anti-proliferative effects of IFN. In this study, we demonstrated that EGCG and/or IFN treatments to melanoma cells resulted in a marked i) decrease in cell proliferation and colony formation ability, and ii) induction of apoptosis. Interestingly, the combination was found to be more effective than either of the agents alone. Further, the anti-proliferative effects of EGCG and/or IFN were accompanied with an increase in FAS protein levels and a decrease in nuclear factor NF-κB/p65 in the nucleus as well as NF-κB promoter activity. EGCG and/or IFN also resulted in an increase in FAS-L mediated apoptosis. Further, EGCG and/or IFN treatments resulted in a decrease in melanoma tumor growth and protein levels of proliferation marker PCNA, in athymic nude mice implanted with melanoma tumors. The combination of the two modalities demonstrated a better response than either of them alone. Our data suggest that EGCG could impart therapeutic advantage if used in conjunction with IFN.  相似文献   

9.

Background  

Melanoma inhibitory activity (MIA) is a small secreted protein that interacts with extracellular matrix proteins. Its over-expression promotes the metastatic behavior of malignant melanoma, thus making it a potential prognostic marker in this disease. In the present study, the expression and functional role of MIA was analyzed in pancreatic cancer by quantitative real-time PCR (QRT-PCR), immunohistochemistry, immunoblot analysis and ELISA. To determine the effects of MIA on tumor cell growth and invasion, MTT cell growth assays and modified Boyden chamber invasion assays were used.  相似文献   

10.
11.
12.

Background

Prognostic factors of melanoma with distant metastasis and systemic treatment are only poorly established. This study aimed to analyse the impact of S100B, lactate dehydrogenase (LDH) and the type of treatment on survival in advanced patients receiving systemic treatment.

Patients and Methods

We analysed overall survival of 499 patients from the university department of dermatology in Tuebingen, Germany, with unresectable melanoma at the time point of initiation of first-line systemic therapy. Only patients who started treatment between the years 2000 and 2010 were included. Disease-specific survival was calculated by bivariate Kaplan Meier survival probabilities and multivariate Cox hazard regression analysis.

Results

In univariate analysis LDH, S100B, the site of distant metastasis (soft tissue vs. lung vs. other visceral), the presence of brain metastases and the type of treatment (monochemotherapy, polychemotherapy, immunotherapy or biochemotherapy) were associated with overall survival (all p<0.001). In multivariate analysis LDH (Hazard ratio [HR] 1.6 [1.3–2.1]; p<0.001), S100B (HR 1.6 [1.2–2.1]; p<0.001) and the presence of brain metastases (HR 1.5 [1.1–1.9]; p = 0.009), but not the type of treatment had significant independent impact. Among those factors normal S100B was the best indicator of long-term survival, which was 12.3% after 5 years for this subgroup.

Conclusion

Serum S100B is a prognostic marker predicting survival at the time of initiation of first-line treatment in unresectable melanoma patients. Compared to the other independent factors LDH and the presence of brain metastases it is most appropriate to predict long-term survival and requires further prospective investigation in patients treated with new and more potent drugs in metastatic melanoma.  相似文献   

13.
14.
S100B is an EF-hand containing calcium-binding protein of the S100 protein family that exerts its biological effect by binding and affecting various target proteins. A consensus sequence for S100B target proteins was published as (K/R)(L/I)xWxxIL and matches a region in the actin capping protein CapZ (V.V. Ivanenkov, G.A. Jamieson, Jr., E. Gruenstein, R.V. Dimlich, Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ, J. Biol. Chem. 270 (1995) 14651-14658). Several additional S100B targets are known including p53, a nuclear Dbf2 related (NDR) kinase, the RAGE receptor, neuromodulin, protein kinase C, and others. Examining the binding sites of such targets and new protein sequence searches provided additional potential target proteins for S100B including Hdm2 and Hdm4, which were both found to bind S100B in a calcium-dependent manner. The interaction between S100B and the Hdm2 and/or the Hdm4 proteins may be important physiologically in light of evidence that like Hdm2, S100B also contributes to lowering protein levels of the tumor suppressor protein, p53. For the S100B-p53 interaction, it was found that phosphorylation of specific serine and/or threonine residues reduces the affinity of the S100B-p53 interaction by as much as an order of magnitude, and is important for protecting p53 from S100B-dependent down-regulation, a scenario that is similar to what is found for the Hdm2-p53 complex.  相似文献   

15.
The poor prognosis of melanoma and the high cost of lymph node biopsy for melanoma patients have led to an urgent need for the discovery of convenient and accurate prognostic indicators. Here, we have developed a natural glycoprotein microarray to discover serum autoantibodies to distinguish between patients with node negative melanoma and node positive melanoma. Dual-lectin affinity chromatography was used to extract glycoproteins from a melanoma cell line. Liquid-based reverse phase separation and microarray platforms were then applied to separate and spot these natural proteins on nitrocellulose slides. The serum autoantibodies were investigated by exposing these proteins to sera from 43 patients that have already been diagnosed to have different stages of early melanoma. The combination of 9 fractions provides a 55% sensitivity with 100% specificity for the detection of node positive against node negative and a 62% sensitivity with 100% specificity for the detection of node negative against node positive. Recombinant proteins were used to confirm the results using a sample set with 79 patients with diagnosed melanoma. The response of sera against recombinant 94 kD glucose-regulated protein (GRP94), acid ceramidase (ASAH1), cathepsin D (CTSD), and lactate dehydrogenase B (LDHB) shared a similar pattern to the fractions where they were identified. The glycoarray platform provides a convenient and highly reproducible method to profile autoantibodies that could be used as serum biomarkers for prognosis of melanoma.  相似文献   

16.
S100A4, a member of the S100 protein family of EF‐hand calcium‐binding proteins, is overexpressed in various tumour entities, including melanoma, and plays an important role in tumour progression. Several studies in epithelial and mesenchymal tumours revealed a correlation between extracellular S100A4 and metastasis. However, exact mechanisms how S100A4 stimulates metastasis in melanoma are still unknown. From a pilot experiment on baseline synthesis and secretion of S100A4 in human melanoma cell lines, which are in broad laboratory use, A375 wild‐type cells and, additionally, newly generated A375 cell lines stably transfected with human S100A4 (A375‐hS100A4) or human receptor for advanced glycation endproducts (A375‐hRAGE), were selected to investigate the influence of extracellular S100A4 on cell motility, adhesion, migration and invasion in more detail. We demonstrated that A375 cells actively secrete S100A4 in the extracellular space via an endoplasmic reticulum‐Golgi‐dependent pathway. S100A4 overexpression and secretion resulted in prometastatic activation of A375 cells. Moreover, we determined the influence of S100A4‐RAGE interaction and its blockade on A375, A375‐hS100A4, A375‐hRAGE cells, and showed that interaction of RAGE with extracellular S100A4 contributes to the observed activation of A375 cells. This investigation reveals additional molecular targets for therapeutic approaches aiming at blockade of ligand binding to RAGE or RAGE signalling to inhibit melanoma metastasis.  相似文献   

17.
S100B belongs to a family of calcium-binding proteins involved in cell cycle and cytoskeleton regulation. We observed an inhibitory effect of S100B on glial fibrillary acidic protein (GFAP) phosphorylation, when stimulated by cAMP or Ca2+/calmodulin, in a cytoskeletal fraction from primary astrocyte cultures. We found that S100B has no direct effect on CaM KII activity, the major kinase in this cytoskeletal fraction able to phosphorylate GFAP. The inhibition of GFAP phosphorylation is most likely due to the binding of S100B to the phosphorylation sites on this protein and blocking the access of these sites to the protein kinases. This inhibition was dependent on Ca2+. However, Zn2+ could substitute for Ca2+. The inhibitory effect of S100B was prevented by TRTK-12, a peptide that blocks S100B interaction with several target proteins including glial fibrillary acidic protein. These data suggest a role for S100B in the assembly of intermediate filaments in astrocytes.  相似文献   

18.
Aldo-keto reductase family 1 B10 (AKR1B10, also designated aldose reductase-like-1, ARL-1) is a novel protein identified from human hepatocellular carcinoma (HCC). This protein belongs to aldo-keto reductase superfamily, a group of proteins implicated in intracellular detoxification, cell carcinogenesis, and cancer therapeutics. AKR1B10 is primarily expressed in the colon and small intestine with low levels in the liver, thymus, prostate, and testis but overexpressed in the liver and lung cancer, making it a potential cancer diagnostic and/or prognostic marker. AKR1B10 could reduce retinals to retinols eliminating intracellular retinoic acid, a signaling molecule regulating cell proliferation and differentiation. AKR1B10 may impact the carcinogenesis process through controlling retinoic acid signaling.  相似文献   

19.
The S100 protein family comprises at least 25 members which, with the exception of S100G, act as Ca2+-sensor proteins that participate in Ca2+ signal transduction by interacting with target proteins thereby modifying their activities. S100 proteins are expressed in vertebrates exclusively, display a cell-specific distribution, and regulate a large variety of intracellular activities. Some S100 proteins are released by a non-classical pathway and exert regulatory effects on several cell types. The receptor for advanced glycation end products (RAGE) has been shown to transduce extracellular effects of S100B, S100A4, S100A6, S100A11, S100A12, S100A13 and S100P. However, some S100 proteins can signal by engaging RAGE as well as non-RAGE receptors. Immune cells (i.e., monocytes/macrophages/microglia, neutrophils and lymphocytes), activated endothelial and vascular smooth muscle cells, neurons, astrocytes, chondrocytes and pancreatic tumor cells are the cell types reported to respond to certain S100 proteins via RAGE engagement. In general, relatively high concentrations of S100 proteins are required for activation of RAGE in responsive cells. S100B is unique in that it can engage RAGE in neurons at low and high concentrations with trophic and toxic effects, respectively, and S100A4 stimulates matrix metalloproteinase 13 release from chondrocytes at nanomolar doses in a RAGE-mediated manner. Oligomerization of S100 proteins under the non-reducing, high-Ca2+ conditions found extracellularly appears to play a relevant role in RAGE activation, and binding of at least S100A12 and S100B results in RAGE oligomerization. Thus, S100/RAGE interactions might have important consequences during development and in tissue homeostasis as well as in inflammatory, degenerative and tumor processes.  相似文献   

20.
S100 calcium binding protein B (S100B), a well-studied marker for neurologic injury, has been suggested as a candidate for predicting outcome after subarachnoid hemorrhage. We performed a pooled analysis summarizing the associations between S100B protein in serum and cerebrospinal fluid (CSF) with radiographic vasospasm, delayed ischemic neurologic deficit (DIND), delayed cerebral infarction, and Glasgow Outcome Scale (GOS) outcome. A literature search using PubMed, the Cochrane Library, and the EMBASE databases was performed to identify relevant studies published up to May 2015. The weighted Stouffer’s Z method was used to perform a pooled analysis of outcome measures with greater than three studies. A total of 13 studies were included in this review. Higher serum S100B level was found to be associated with cerebral infarction as diagnosed by CT (padj = 3.1 x 10−4) and worse GOS outcome (padj = 5.5 x 10−11). There was no association found between serum and CSF S100B with radiographic vasospasm or DIND. S100B is a potential prognostic marker for aSAH outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号