首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse models are often used to study human genes because it is believed that the expression and function are similar for the majority of orthologous genes between the two species. However, recent comparisons of microarray data from thousands of orthologous human and mouse genes suggested rapid evolution of gene expression profiles under minimal or no selective constraint. These findings appear to contradict non-array-based observations from many individual genes and imply the uselessness of mouse models for studying human genes. Because absolute levels of gene expression are not comparable between species when the data are generated by species-specific microarrays, use of relative mRNA abundance among tissues (RA) is preferred to that of absolute expression signals. We thus reanalyze human and mouse genome-wide gene expression data generated by oligonucleotide microarrays. We show that the mean correlation coefficient among expression profiles detected by different probe sets of the same gene is only 0.38 for humans and 0.28 for mice, indicating that current measures of expression divergence are flawed because the large estimation error (discrepancy in expression signal detected by different probe sets of the same gene) is mistakenly included in the between-species divergence. When this error is subtracted, 84% of human-mouse orthologous gene pairs show significantly lower expression divergence than that of random gene pairs. In contrast to a previous finding, but consistent with the common sense, expression profiles of orthologous tissues between species are more similar to each other than to those of nonorthologous tissues. Furthermore, the evolutionary rate of expression divergence and that of coding sequence divergence are found to be weakly, but significantly positively correlated, when RA and the Euclidean distance are used to measure expression-profile divergence. These results highlight the importance of proper consideration of various estimation errors in comparing the microarray data between species.  相似文献   

2.
3.
4.
The decarboxylases are involved in neurotransmitter synthesis in animals, and in pathways of secondary metabolism in plants. Different decarboxylase proteins are characterized for their different substrate specificities, but are encoded by homologous genes. We study, within a maximum-likelihood framework, the evolutionary relationships among dopa decarboxylase (Ddc), histidine decarboxylase (Hdc) and alpha-methyldopa hypersensitive (amd) in animals, and tryptophan decarboxylase (Wdc) and tyrosine decarboxylase (Ydc) in plants. The evolutionary rates are heterogeneous. There are differences between paralogous genes in the same lineages: 4.13 x 10(-10) nucleotide substitutions per site per year in mammalian Ddc vs. 1.95 in Hdc; between orthologous genes in different lineages, 7.62 in dipteran Ddc vs. 4.13 in mammalian Ddc; and very large temporal variations in some lineages, from 3.7 up to 54.9 in the Drosophila Ddc lineage. Our results are inconsistent with the molecular clock hypothesis.  相似文献   

5.
《Gene》1996,174(1):151-158
An expression profile of active genes in the human liver was obtained by collecting sequences with a 3′-directed cDNA library that faithfully represents composition of the mRNA population. The results show the relative activity of ca. 600 genes in maintaining the hepatocytes and sustaining their liver-specific phenotypes. The most active group of genes are those for the production of plasma proteins, followed by the genes for the synthesis of lipoproteins, protease inhibitors, coagulation factors, and complements. This balance of gene activity was maintained for four independently obtained expression profiles from human livers, including those of adult and fetus. The expression profiling was extended to the liver of adult mouse, used as a model for the molecular etiology of hepatocytes and for examining the effects of drugs. Subtle biological differences between the human and mouse livers are reflected in the global expression profiles of active genes, especially with regard to the synthesis of plasma proteins, lipoproteins and complements. This comparative analysis using expression profiling should find a wide application in comparative biology.  相似文献   

6.
The expression patterns of Tac2 and NK3 mRNA and of pep2, the neurokinin B (NKB) precursor protein, were compared in rats and mice. Pep2 immunoreactivity was observed in fibers, terminals, and perikarya in the brains of both species, but the number of NKB-immunoreactive cells was generally smaller in mice than in the corresponding nuclei in rats. Congruent distribution patterns of Tac2 mRNA and NKB were found in many nuclei of the thalamus and hypothalamus (habenula, anterodorsal nucleus, preoptic area, arcuate nucleus, paraventricular nucleus). However, mice expressed Tac2 mRNA neither in the hippocampus nor in the nucleus of the lateral olfactory tract, in contrast to rats. Accordingly, mice showed no NKB in the projection areas of these nuclei, such as the olfactory tubercle, whereas a clear NKB signal was present in rat tissues. Surprisingly, we found nearly identical NK3 mRNA expression patterns in both species, despite the species differences in NKB expression. Thus, although the expression patterns of Tac2 and NKB are similar in rats and mice, noteworthy differences exist. Our results have important implications for the interpretation of behavioral results concerning the NKB/NK3 system in these species. This study was supported by a grant from the Deutsche Forschungsgemeinschaft (FOR425/TPII)  相似文献   

7.
Comparative studies of genes in the pseudoautosomal region (PAR) of human and mouse sex chromosomes have thus far been very limited. The only comparisons that can presently be made indicate that the PARs of humans and mice are not identical in terms of gene content. Here we describe additional comparative studies of human pseudoautosomal genes and their mouse homologs. Using a somatic cell hybrid mapping panel, we have assigned the mouse homolog of the human pseudoautosomal interleukin 3 receptor alpha subunit (IL3RA) gene to mouse Chromosome (Chr) 14. Attempts to clone the mouse homolog of the human pseudoautosomal adenine nucleotide translocase-3 (ANT3) gene resulted in the isolation of the murine homologs of the human ANT1 and ANT2 genes. The mouse Ant1 and Ant2 genes are very similar in sequence to their human homologs, and we have mapped them to mouse Chromosomes (Chrs) (8 and X respectively) that exhibit conserved synteny with the chromosomes on which the human genes are located. In contrast, the homolog of ANT3 appears to be either very divergent or absent from the mouse genome. Southern blot analysis of DNA from a variety of mammalian species shows restricted conservation of human pseudoautosomal genes, a trend that also applies to the two cloned mouse homologs of these genes and to neighboring human genes in distal Xp22.3. Our observations combined with those of other workers lead us to propose a model for the evolution of the PAR that includes both rapid sequence evolution and the incremental reduction in size of the region during mammalian evolution. Received: 4 May 1995 / Accepted: 21 August 1995  相似文献   

8.
Hughes AL  Friedman R 《Genomics》2006,88(4):462-467
Aire (autoimmune regulatory protein) enhances expression of certain genes in thymic medullary epithelial cells (MECs). Using publicly available data, we examined expression patterns, across 82 distinct tissue types, of genes previously identified as Aire-activated, Aire-repressed, and Aire-independent. Consistent with the hypothesis that the effect of Aire in MECs is to increase expression of tissue-specific genes, Aire-activated genes had a low overall level of expression but a large range between the lowest and the highest levels of expression in different tissues. By contrast, Aire-repressed genes tended to have a high overall level of expression and less marked differences between the highest and the lowest levels of expression. Nonetheless, the expression scores of Aire-repressed genes showed broader ranges of values than those of Aire-independent genes. Phylogenetic analyses of members of two gene families that included two Aire-activated genes illustrated two contrasting patterns of the relationship of Aire-activated genes within the same family. The two Aire-activated members of the major urinary protein family arose through a recent gene duplication (after the rat-mouse divergence), whereas the most recent common ancestor of the two Aire-activated members of cytochrome p450 family 2 duplicated prior to the radiation of the eutherian orders. In the latter family, the Aire-activated Cyp2a4 gene and the Aire-independent Cyp2a5 gene arose through a recent duplication, after the rat-mouse divergence. Thus the set of Aire-activated genes is subject to change over evolutionary time and includes genes of recent origin.  相似文献   

9.
10.
小鼠基因转录表达分析中内参基因的优选   总被引:1,自引:0,他引:1  
目的 建立小鼠基因转录表达分析中内参基因的选择方法.方法 以C57BL/6J和C3H/HeJ两个品系3个不同组织及2个不同发育阶段为研究对象,应用反转录实时定量PCR技术,评价GAPDH(glyceraldehyde-3-phosphate dehydrogenase)、HPRTl(hypoxanthine phosphoribosyl transferase)、B2M(β2-microglobulin)、PPIA(peptidylprolyl isomerase A)、ACTB(Actin-beta)和18S rRNA(18S ribosomal RNA)等6个看家基因在下丘脑、垂体与卵巢中mRNA水平的表达稳定性.结果 GeNorm统计分析表明,GAPDH和HPRT1表达最为稳定,PPIA等次之,B2M在不同组织和发育阶段中都几乎无表达.结论 成功筛选到GAPDH和HPRT1两个稳定表达的看家基因,证实了小鼠基因表达转录分析中内参基因选择的必要性和可行性.  相似文献   

11.
Major histocompatibility complex (MHC) class I molecules play a pivotal role in immune defense system, presenting the antigen peptides to cytotoxic CD8+ T lymphocytes. Most vertebrates possess multiple MHC class I loci, but the analysis of their evolutionary relationships between distantly related species has difficulties because genetic events such as gene duplication, deletion, recombination, and/or conversion have occurred frequently in these genes. Human MHC class I genes have been conserved only within the primates for up to 46-66 My. Here, we performed comprehensive analysis of the MHC class I genes of the medaka fish, Oryzias latipes, and found that they could be classified into four groups of ancient origin. In phylogenetic analysis using these genes and the classical and nonclassical class I genes of other teleost fishes, three extracellular domains of the class I genes showed quite different evolutionary histories. The α1 domains generated four deeply diverged lineages corresponding to four medaka class I groups with high bootstrap values. These lineages were shared with salmonid and/or other acanthopterygian class I genes, unveiling the orthologous relationships between the classical MHC class I genes of medaka and salmonids, which diverged approximately 260 Ma. This suggested that the lineages must have diverged in the early days of the euteleost evolution and have been maintained for a long time in their genome. In contrast, the α3 domains clustered by species or fish groups, regardless of classical or nonclassical gene types, suggesting that this domain was homogenized in each species during prolonged evolution, possibly retaining the potential for CD8 binding even in the nonclassical genes. On the other hand, the α2 domains formed no apparent clusters with the α1 lineages or with species, suggesting that they were diversified partly by interlocus gene conversion, and that the α1 and α2 domains evolved separately. Such evolutionary mode is characteristic to the teleost MHC class I genes and might have contributed to the long-term conservation of the α1 domain.  相似文献   

12.
13.
14.
15.
In this study, we identified the aberrant expression profiles of isoproterenol- (ISO; synthetic catecholamine)induced endoplasmic reticulum (ER) stress response genes in mouse myocardium. Mouse models of acute catecholamine cardiotoxicity were induced by ISO for 6, 12, and 24 h. We performed whole genome oligo microarrays of damaged mouse cardiac tissues, and we found 26 ER stress-related genes whose expression changed significantly for at least one time point. The functional analysis of those genes indicated that myocardial cells were protected by increasing folding capacity, inhibiting general protein translation, and promoting the degradation of misfolded proteins; however, some of them underwent apoptosis in the early stage of ER stress after ISO induced.  相似文献   

16.
MOTIVATION: Following an extensive search for orthologous genes between the complete genomes from archaea and bacteria, the spatial association of the orthologs has been investigated in terms of synteny, the conservation of the order of neighboring genes. However, the relationships between the relative locations of remote orthologs over entire genomes have not been shown. RESULTS: Comprehensive comparisons between the locations of orthologs on nineteen archaeal and bacterial genomes are presented by the location to location correspondence based on the gene-location distance. When the two genomes are rotated such that a pair of orthologs with the shortest distance is set in the same angle, a statistically significant number of orthologs maintain their relative locations between the genomes. Even by the short distances at the 5% significance level, the rotations are restricted within a narrow range, suggesting an intrinsic angle for realizing similar locations between the orthologs in each genome pair. Furthermore, the rotations in the restricted range agree with the replication origin and terminus sites for the analyzed genomes where such sites are known. The relationship between location-maintained orthologs and gene function is also discussed.  相似文献   

17.
Dlx homeobox genes of vertebrates are often organised as physically linked pairs in which the two genes are transcribed convergently (tail-to-tail arrangement). Three such Dlx pairs have been found in mouse, human, and zebrafish and are thought to have originated from the duplication of an ancestral gene pair. These pairs include Dlx1/Dlx2, Dlx7/Dlx3, and Dlx6/Dlx5 (the zebrafish orthologue of Dlx5 is named dlx4). Expression patterns of physically linked Dlx genes overlap extensively. Furthermore, orthologous Dlx genes often show highly similar expression patterns. We analysed Dlx expression during the gastrula and early somitogenesis of the mouse and zebrafish. It was found that expression of the mouse Dlx6 gene takes place in the rostral ectoderm and presumptive olfactory and otic placodes with patterns similar to the previously reported expression of the physically linked Dlx5 gene. However, we observed only very weak expression of the mouse Dlx3 gene at the same stage. This contrasts with the expression of dlx genes in zebrafish where dlx3 and dlx7, but not dlx4 and dlx6 are expressed during gastrulation in the rostral ectoderm and presumptive placodes. Thus, Dlx expression patterns at early stages are better conserved between paralogous pairs of physically linked genes than between orthologous pairs. This suggests that early expression of Dlx genes existed prior to the duplications that led to the multiple pairs of physically linked genes but was differentially conserved in different paralogs in zebrafish and mice.  相似文献   

18.
MOTIVATION: Genes are often characterized dichotomously as either housekeeping or single-tissue specific. We conjectured that crucial functional information resides in genes with midrange profiles of expression. RESULTS: To obtain such novel information genome-wide, we have determined the mRNA expression levels for one of the largest hitherto analyzed set of 62 839 probesets in 12 representative normal human tissues. Indeed, when using a newly defined graded tissue specificity index tau, valued between 0 for housekeeping genes and 1 for tissue-specific genes, genes with midrange profiles having 0.15< tau<0.85 were found to constitute >50% of all expression patterns. We developed a binary classification, indicating for every gene the I(B) tissues in which it is overly expressed, and the 12-I(B) tissues in which it shows low expression. The 85 dominant midrange patterns with I(B)=2-11 were found to be bimodally distributed, and to contribute most significantly to the definition of tissue specification dendrograms. Our analyses provide a novel route to infer expression profiles for presumed ancestral nodes in the tissue dendrogram. Such definition has uncovered an unsuspected correlation, whereby de novo enhancement and diminution of gene expression go hand in hand. These findings highlight the importance of gene suppression events, with implications to the course of tissue specification in ontogeny and phylogeny. AVAILABILITY: All data and analyses are publically available at the GeneNote website, http://genecards.weizmann.ac.il/genenote/ and, GEO accession GSE803. CONTACT: doron.lancet@weizmann.ac.il SUPPLEMENTARY INFORMATION: Four tables available at the above site.  相似文献   

19.
The human delta- and beta-globin genes, contained in a recombinant bacteriophage (lambda H beta G1), were introduced into mouse fibroblasts by cotransformation with a plasmid (chi 1) containing the herpes simplex thymidine kinase gene using the calcium phosphate precipitation technique. A molar ratio of lambda H eta G1 to chi 1 DNA of 3:1 was used. Four of the eleven stable transformants obtained contained intact delta- and beta-globin genes as determined by Southern blot analysis. To assess methylation in the segment of human DNA introduced into mouse cells, digestion with Hpa II or Msp I alone or with a second restriction enzyme was performed. The sites examined near the human delta- and beta-globin genes in transformed cells were not methylated. RNA extracted from the transformed cells was analyzed by RNA-cDNA hybridization; no more than 100 copies of human beta-globin mRNA/cell were found. Although hypomethylation of sites surrounding expressed globin genes in erythroid cells has been described, this property is not sufficient to ensure a high level of expression in fibroblasts.  相似文献   

20.
We have asked whether there are sequences around the human growth hormone gene that render this gene responsive to induction by glucocorticoid hormones. Recombinant clones encoding human growth hormone were introduced into the chromosome of murine fibroblasts by cotransformation. Exposure of cotransformants to glucocorticoids results in a three to five fold induction of human growth hormone mRNA and a similar induction in secreted human growth hormone protein. The DNA sequences required for induction reside within 500 nucleotides of 5′-flanking DNA. Fusion of this segment of 5′-flanking DNA to the structural gene sequences of a hormone-insensitive gene, such as thymidine kinase, now renders this gene responsive to glucocorticoid induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号