首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transforming growth factor-beta (TGF-beta), a product of neoplastic and hemopoietic cells, is a bifunctional regulator of the immune response. At femtomolar concentrations, TGF-beta stimulates monocyte migration, and picomolar quantities induce synthesis of monocyte growth factors, including IL-1, that may promote tissue repair by regulating fibrosis and angiogenesis. Paradoxically, TGF-beta at picomolar concentrations also blocks the ability of IL-1 to stimulate lymphocyte proliferation. At 0.01 to 1.0 ng/ml, TGF-beta 1 and its homologue, TGF-beta 2, suppress the IL-1-dependent murine thymocyte proliferation assay. TGF-beta also inhibits human peripheral blood T lymphocyte mitogenesis. Inhibition of cell division appears to occur after activation of the lymphocytes inasmuch as neither gene expression nor translation of IL-2R is suppressed. Furthermore, TGF-beta does not block synthesis of IL-2. Therefore, TGF-beta 1 and TGF-beta 2 likely act at a site distal to IL-1 to block lymphocyte DNA synthesis. These findings suggest that TGF-beta secreted in an inflammatory site may be beneficial in diminishing lymphocyte function while promoting fibrosis and tissue repair. However, TGF-beta generated by neoplastic tissues may provide a mechanism for unrestricted tumor cell growth through its selective immunosuppressive effects.  相似文献   

2.
Connective tissue growth factor (CTGF) is a cysteine-rich peptide that exhibits platelet-derived growth factor (PDGF)-like biological and immunological activities. CTGF is a member of a family of peptides that include serum-induced immediate early gene products, a v-src-induced peptide, and a putative avian transforming gene, nov. In the present study, we demonstrate that human foreskin fibroblasts produce high levels of CTGF mRNA and protein after activation with transforming growth factor beta (TGF-beta) but not other growth factors including PDGF, epidermal growth factor, and basic fibroblast growth factor. Because of the high level selective induction of CTGF by TGF-beta, it appears that CTGF is a major autocrine growth factor produced by TGF-beta-treated human skin fibroblasts. Cycloheximide did not block the large TGF-beta stimulation of CTGF gene expression, indicating that it is directly regulated by TGF-beta. Similar regulatory mechanisms appear to function in vivo during wound repair where there is a coordinate expression of TGF-beta 1 before CTGF in regenerating tissue, suggesting a cascade process for control of tissue regeneration and repair.  相似文献   

3.
4.
McNulty AL  Guilak F 《Biorheology》2008,45(3-4):487-500
Current therapies for meniscal injury seek to preserve and repair damaged tissue since loss of meniscal tissue is associated with degenerative changes in the joint, ultimately leading to osteoarthritis (OA). After a meniscal tear, the difficulty of integrating juxtaposed meniscal surfaces continues to be an obstacle. In order to determine the local factors that are necessary for successful tissue repair, previous studies have developed in vitro model systems that allow both biological and quantitative biomechanical measures of meniscus repair. Many studies have shown the importance of individual factors in meniscus metabolism, but there is a complex interplay among a variety of factors that influence meniscal healing, including inflammatory cytokines, growth factors, mechanical loading, and zonal differences in cell and tissue properties. In particular, the upregulation of inflammatory cytokines following joint injury appears to have significant catabolic influences on meniscal cell metabolic activity that must be overcome in order to promote repair. In the presence of inflammatory cytokines, such as interleukin-1 (IL-1) or tumor necrosis factor alpha (TNF-alpha), intrinsic meniscal repair in vitro is significantly inhibited. While anabolic growth factors, such as transforming growth factor-beta1 (TGF-beta1), enhance meniscal repair, they cannot completely overcome the IL-1-mediated inhibition of repair. The mechanisms by which these mediators influence meniscal repair, and their interactions with other factors in the microenvironment, such as mechanical loading, remain to be determined. Future studies must address these complex interactions during meniscal healing to ultimately enhance meniscal repair.  相似文献   

5.
Wound contraction is one function of granulation tissue which is critical to repair. This study compares the ability of fibroblast-like cells derived from granulation tissue of various ages to contract a tissue equivalent, or a collagen gel, and examines the influence of growth factors implicated in wound repair on collagen gel contraction by these different cell populations. Cells from older granulation tissue (21 and 28 days) have an enhanced ability to contract a tissue equivalent when compared to cells from younger granulation tissue (7 and 14 days) or normal rat skin fibroblasts. Transforming growth factor-beta 1 (TGF-beta 1) enhanced contractility most in those cells which had a greater basal contractile ability. While basic fibroblast growth factor (bFGF) alone had moderately stimulatory effects at low doses (0.1-1.0 ng/ml), higher doses (greater than or equal to 10 ng/ml) inhibited basal contraction. Pretreatment with bFGF followed by exposure to TGF-beta 1, with or without the continued presence of bFGF, delayed gel contraction by cells from skin and early granulation tissue, but bFGF enhanced TGF-beta 1 activity in highly contractile cells. Transforming growth factor-alpha moderately enhanced contraction by cells from older granulation tissue. While both TGF-beta 1 and bFGF enhanced wound repair, their differential effects on the fibroblast-like cell derived from granulation tissue of different ages suggest that phenotypic differences exist between these cell populations. In addition, our results predict significant interactions between polypeptide cytokines at the site of repair.  相似文献   

6.
7.
Gene therapy for tissue regeneration   总被引:6,自引:0,他引:6  
Tissue repair and regeneration are the normal biological responses of many different tissues in the body to injury. During the healing process, profound changes occur in cell composition and extracellular matrix (ECM) formation. Fibroblasts and equivalent reparative cells migrate to the wounded area and subsequently proliferate. These cells and reparative cells from the surrounding tissue are responsible for the rapid repair which results in tissue regeneration. Growth factors, one of which is transforming growth factor-beta (TGF-beta), stimulate fibroblasts and smooth muscle cells to proliferate and synthesize ECM proteins. This process of early repair provides a rapid way to restore new tissue and mechanical integrity. This early tissue repair process is normally followed by involution, which requires the production and activation of proteases, tissue maturation and remodeling, reorganization and finally regeneration. Alternately, failure to replace the critical components of the ECM, including elastin and basement membrane, results in abnormal regeneration of the epithelial cell layer. Although remodeling should occur during healing, provisional repair may be followed by excessive synthesis and deposition of collagen, which results in irreversible fibrosis and scarring. This excessive fibrosis which occurs in aberrant healing is at least in part mediated by persistent TGF-beta. Because of the central role of collagen in the wound healing process, the pharmacological control of collagen synthesis has been of paramount importance as a possible way to abrogate aberrant healing and prevent irreversible fibrosis. Fibrosis is an abnormal response to tissue injury.  相似文献   

8.
The effects on vascular wound repair in vitro of aFGF and TGF-beta, growth factors having opposite influences on endothelial cell growth and angiogenesis, were studied using as a model a mechanical lesion of confluent endothelium. Modulation by heparin of the activities of these growth factors during the repair process was also examined. Whereas heparin alone inhibited repair by lowering both cell proliferation and cell migration, TGF-beta alone mainly inhibited cell proliferation. When added together, TGF-beta and heparin exerted a combined inhibitory effect resulting in a residual lesion 50% larger than in controls. aFGF alone accelerated lesion coverage and this effect was enhanced by 40% over control values when heparin was added with aFGF. This acceleration was slightly (less than 10%) but consistently diminished by TGF-beta. Cell density in confluent unwounded areas was increased by 40% in the presence of aFGF, but TGF-beta diminished cell density by 20%. A small (30%) increase in intracellular cAMP was measured whenever aFGF was present during the repair process. In comparison, intracellular cAMP inducing agents (forskolin, dbcAMP) accelerated cell migration by 20% during lesion recovery without affecting cell proliferation or density. The present results show that the inhibitory effects of TGF-beta during vascular wound repair are opposed by aFGF. Furthermore, heparin (or heparan sulfates in vivo) modulates growth factors having activating or inhibiting functions and thus plays a regulatory role during the repair process. cAMP-inducing substances other than growth factors are able to accelerate cell migration.  相似文献   

9.
Transforming growth factor-beta (TGF-beta) is a cytokine that plays a pivotal role in growth, differentiation, development, immune response and wound healing. TGF-beta is upregulated following wound infliction and inflammation, and plays an important role in the production of extracellular matrix proteins that contribute to tissue repair. However, in some diseases, TGF-beta dysregulation can lead to tumor formation, organ fibrosis and the disruption of organ function. A number of molecules have been designed to counteract the effects of TGF-beta, including anti-TGF-beta monoclonal antibodies and various small molecules. Here we discuss the design, use and advantages of the highly specific TGF-beta binding molecule, the soluble human TGF-beta receptor (sTbetaR.Fc) as a TGF-beta sequestering agent.  相似文献   

10.
Skin repair and scar formation: the central role of TGF-beta   总被引:1,自引:0,他引:1  
Wound healing is a complex process that we have only recently begun to understand. Central to wound repair is transforming growth factor beta (TGF-beta), a cytokine secreted by several different cell types involved in healing. TGF-beta has diverse effects, depending upon the tissue studied. This review focuses on healing in skin, particularly the phases of cutaneous wound repair and the role of TGF-beta in normal and impaired wound-healing models. It also explores TGF-beta activity in scarless foetal wound healing. Knowledge of TGF-beta function in scarless repair is critical to improving healing in clinical scenarios, such as diabetic wounds and hypertrophic scars.  相似文献   

11.
Regulation of cell proliferation by Smad proteins   总被引:40,自引:0,他引:40  
  相似文献   

12.
Decorin is a member of the small leucine-rich proteoglycan (SLRP) gene family that has recently become a focus in various areas of cancer research. The decorin protein consists of a core protein and a covalently linked glycosaminoglycan chain. Decorin binds to collagens type I, II and IV in vivo and promotes the formation of fibers with increased stability and changes in solubility. Further, the decorin core protein binds to growth factors, including transforming growth factor-beta (TGF-beta), to other intercellular matrix molecules such as fibronectin and thrombospondin, and to the decorin endocytosis receptor. Decorin may directly interfere with the cell cycle via the induction of p21WAF1/CIP1 (p21), a potent inhibitor of cyclin-dependent kinases (CDKs). Here, we discuss interactions of decorin with TGF-beta and with p21, both of which are relevant to carcinogenesis and tumor progression. TGF-beta is released by tumors of various histogenetic origins and promotes immunosuppression in the host and tumor immune escape by induction of growth arrest and apoptosis in immune cells, by downregulation of MHC II antigen expression and by changes in the cytokine release profiles of immune and tumor cells. Moreover, TGF-beta may modulate tumor growth in an autocrine and paracrine fashion, may mediate drug resistance, and may facilitate tumor angiogenesis. Decorin binds to TGF-beta, thus inhibiting its bioactivity, and is a direct or indirect negative modulator of TGF-beta synthesis. Ectopic expression of decorin results in the regression of rat C6 gliomas, an antineoplastic effect attributed to the reversal of TGF-beta-induced immunosuppression. On the other hand, de novo expression of decorin in colon cancer cells and some other tumor cells, even though not in glioma cells, results in an upregulation of p21 expression and a cell cycle arrest, presumably in a TGF-beta-independent manner. Decorin expression is downregulated in many tumors but upregulated in the peritumoral stroma. By virtue of its growth regulatory and immunomodulatory properties, decorin promises to become a novel target for the experimental therapy of human cancers.  相似文献   

13.
TGF-beta and fibrosis   总被引:18,自引:0,他引:18  
Transforming growth factor-beta (TGF-beta) isoforms are multifunctional cytokines that play a central role in wound healing and in tissue repair. TGF-beta is found in all tissues, but is particularly abundant in bone, lung, kidney and placental tissue. TGF-beta is produced by many but not all parenchymal cell types, and is also produced or released by infiltrating cells such as lymphocytes, monocytes/macrophages, and platelets. Following wounding or inflammation, all these cells are potential sources of TGF-beta. In general, the release and activation of TGF-beta stimulates the production of various extracellular matrix proteins and inhibits the degradation of these matrix proteins, although exceptions to these principles abound. These actions of TGF-beta contribute to tissue repair, which under ideal circumstances leads to the restoration of normal tissue architecture and may involve a component of tissue fibrosis. In many diseases, excessive TGF-beta contributes to a pathologic excess of tissue fibrosis that compromises normal organ function, a topic that has been the subject of numerous reviews [1-3]. In the following chapter, we will discuss the role of TGF-beta in tissue fibrosis, with particular emphasis on renal fibrosis.  相似文献   

14.
Metallo-proteinases are implicated in many processes involved in tissue remodeling, cell motility, morphogenesis, and cell and organ growth and differentiation. Recent data suggest that several members of the metzincin family including the matrix metallo-proteinases (MMPs), adamalysin-related proteinases, and the newly described pappalysins, are intimately involved in the activation and/or release of cytokines and growth factors. We review how metzincins, working through unique mechanisms, influence the extracellular milieu of several important cytokines and growth factors including transforming growth factor-beta (TGF-beta), TNF-alpha, IGFs and HB-epidermal growth factor (EGF). Because metzincins can modulate the bioavailability of these peptides, they may serve as unique target molecules to control cytokine and growth factor action in the extracellular environment.  相似文献   

15.
A new homodimer form of transforming growth factor-beta (TGF-beta), TGF-beta 2, has been identified in porcine blood platelets. TGF-beta 2 is homologous to ordinary TGF-beta (TGF-beta 1), which is also present in platelets. TGF-beta 1.2, a heterodimer containing one TGF-beta 1 chain and one TGF-beta 2 chain, has also been isolated. TGF-beta 1 and TGF-beta 2 interact differently with a family of receptors in target cells. A 280 kd receptor displays high affinity for both TGF-beta 1 and TGF-beta 2. Occupancy of this receptor by TGF-beta 1 or TGF-beta 2 correlates with the ability of these TGF-beta s to inhibit cell proliferation. In contrast, 65 kd and 85 kd receptors have high affinity for TGF-beta 1 but lower affinity for TGF-beta 2. The existence of distinct forms of TGF-beta that interact differently with a family of TGF-beta receptors could provide flexibility to the regulation of tissue growth and differentiation by the TGF-beta system.  相似文献   

16.
Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor beta (TGF-beta) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-beta. Cripto bound TGF-beta and reduced the association of TGF-beta with its type I receptor, TbetaRI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-beta signaling in multiple cell types and diminished the cytostatic effects of TGF-beta in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-beta signaling, indicating that endogenous Cripto plays a role in restraining TGF-beta responses.  相似文献   

17.
Flexor tendon repair in zone II is complicated by adhesions that impair normal postoperative gliding. Transforming growth factor-beta (TGF-beta) is a family of growth factors that has been implicated in scar formation. The TGF-beta family of proteins binds to three distinct classes of membrane receptors, termed RI, RII, and RIII. In this study, we analyzed the temporal and spatial distribution of TGF-beta receptor isoforms (RI, RII, and RIII) in a rabbit zone II flexor tendon wound healing model.Twenty-eight adult New Zealand White rabbit forepaws underwent isolation of the middle digit flexor digitorum profundus tendon in zone II. The tendons underwent transection in zone II and immediate repair. The tendons were harvested at increasing time points: 1, 3, 7, 14, 28, and 56 days postoperatively (n = 4 at each time point). The control flexor tendons were harvested without transection and repair (n = 4). Immunohistochemical analysis was used to detect the expression patterns for TGF-beta receptors RI, RII, and RIII.Immunohistochemical staining of the transected and repaired tendons demonstrated up-regulation of TGF-beta RI, RII, and RIII protein levels. TGF-beta receptor production in the experimental group (transection and repair) was concentrated in the epitenon and along the repair site. Furthermore, the TGF-beta receptor expression levels peaked at day 14 and decreased by day 56 postoperatively. In contrast, minimal receptor expression was observed in the untransected and unrepaired control tendons.These data provide evidence that (1) TGF-beta receptors are up-regulated after injury and repair; (2) peak levels of TGF-beta receptor expression occurred at day 14 and decreased by day 56 after wounding and repair; and (3) both the tendon sheath and epitenon have the highest receptor expression, and both may play critical roles in flexor tendon wound healing. Understanding the up-regulation of TGF-beta isoforms and the up-regulation of their corresponding receptors during flexor tendon wound healing provides new targets for biomolecular modulation of postoperative scar formation.  相似文献   

18.
Type beta transforming growth factor (TGF-beta) is found in large amounts in bone tissue, and is a potent mitogen for osteoblast-enriched cell cultures obtained from fetal rat parietal bone. Because other local and systemic factors may be presented to bone cells simultaneously with TGF-beta, it is important to understand the effects of this complex growth regulator in such circumstances. Unlike the effects observed in many tissue systems, TGF-beta does not invariably inhibit the mitogenic response of bone cells to other growth promoters. In contrast, other factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and type alpha tumor necrosis factor (TNF-alpha) limit the response of osteoblastic bone cells to TGF-beta. TGF-beta is a much weaker mitogen for fibroblastic cells obtained from fetal rat bone, whereas fetal bovine serum, EGF, bFGF, and TNF-alpha are more potent stimulators. In addition, TGF-beta does not significantly impair the response of the fibroblastic bone cells to the other tested agents. These findings reinforce a role of TGF-beta as an anabolic bone growth regulator, and suggest that its function may be modified by other local or systemic agents that can also affect bone cells.  相似文献   

19.
Intracellular transforming growth factors (TGFs) were extracted from a human rhabdomyosarcoma cell line and purified to apparent homogeneity by using gel filtration, cation-exchange, and high-performance liquid chromatography. Two types of transforming growth factor activities, TGF-alpha and TGF-beta, were detected. The intracellular polypeptides which belonged to the TGF-alpha family required TGF-beta for full activity in inducing nonneoplastic normal rat kidney fibroblasts to grow in soft agar. These peptides also bound to the membrane receptor for epidermal growth factor. As determined by sodium dodecyl sulfate-polyacrylamide gels, the apparent molecular weight of these intracellular TGF-alpha's was 18 000. Intracellular TGF-beta required either epidermal growth factor or TGF-alpha for stimulation of soft agar growth. The intracellular TGF-beta was purified to homogeneity as judged by a single peak after reverse-phase high-performance liquid chromatography and a single band on a sodium dodecyl sulfate-polyacrylamide gel. The intracellular TGF-beta from the human tumor cell line was similar in all respects tested (migration on sodium dodecyl sulfate-polyacrylamide gels, stimulation of soft agar growth, binding to the membrane receptor for TGF-beta, and amino acid composition) to intracellular TGF-beta from normal human placenta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号