首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteome of Haemophilus influenzae strain Rd KW20 was analyzed by liquid chromatography (LC) coupled with ion trap tandem mass spectrometry (MS/MS). This approach does not require a gel electrophoresis step and provides a rapidly developed snapshot of the proteome. In order to gain insight into the central metabolism of H. influenzae, cells were grown microaerobically and anaerobically in a rich medium and soluble and membrane proteins of strain Rd KW20 were proteolyzed with trypsin and directly examined by LC-MS/MS. Several different experimental and computational approaches were utilized to optimize the proteome coverage and to ensure statistically valid protein identification. Approximately 25% of all predicted proteins (open reading frames) of H. influenzae strain Rd KW20 were identified with high confidence, as their component peptides were unambiguously assigned to tandem mass spectra. Approximately 80% of the predicted ribosomal proteins were identified with high confidence, compared to the 33% of the predicted ribosomal proteins detected by previous two-dimensional gel electrophoresis studies. The results obtained in this study are generally consistent with those obtained from computational genome analysis, two-dimensional gel electrophoresis, and whole-genome transposon mutagenesis studies. At least 15 genes originally annotated as conserved hypothetical were found to encode expressed proteins. Two more proteins, previously annotated as predicted coding regions, were detected with high confidence; these proteins also have close homologs in related bacteria. The direct proteomics approach to studying protein expression in vivo reported here is a powerful method that is applicable to proteome analysis of any (micro)organism.  相似文献   

2.
Haemophilus influenzae Rd was the first free-living organism for which the complete genomic sequence was established. The annotated sequence and known biochemical information was used to define the H. influenzae Rd metabolic genotype. This genotype contains 488 metabolic reactions operating on 343 metabolites. The stoichiometric matrix was used to determine the systems characteristics of the metabolic genotype and to assess the metabolic capabilities of H. influenzae. The need to balance cofactor and biosynthetic precursor production during growth on mixed substrates led to the definition of six different optimal metabolic phenotypes arising from the same metabolic genotype, each with different constraining features. The effects of variations in the metabolic genotype were also studied, and it was shown that the H. influenzae Rd metabolic genotype contains redundant functions under defined conditions. We thus show that the synthesis of in silico metabolic genotypes from annotated genome sequences is possible and that systems analysis methods are available that can be used to analyze and interpret phenotypic behavior of such genotypes.  相似文献   

3.
4.
5.
Lee KJ  Bae SM  Lee MR  Yeon SM  Lee YH  Kim KS 《Proteomics》2006,6(4):1274-1282
Streptococcus pneumoniae is an important human pathogen that causes a variety of diseases, such as pneumonia, bacteremia, meningitis, otitis media, and sinusitis, in both adults and children. The global pattern of growth phase-dependent protein expression of S. pneumoniae during in vitro culture was analyzed using 2-DE combined with MALDI-TOF MS and LC/ESI-MS/MS. Several protein production patterns were observed at four time points throughout the growth stage, although some protein levels did not change significantly. We focused on the switch in protein expression at the transition from log growth phase to stationary phase. Proteins that were significantly induced or repressed at this point are likely to be involved in central intermediary metabolism, amino acid synthesis, nucleotide, and fatty acid metabolism, cell wall synthesis, protein degradation, and stress responses. This global expression profiling approach has revealed previously unrecognized relationships between proteins in the life of this pathogen.  相似文献   

6.
In our previous study, the expression of active H-ferritins in Saccharomyces cerevisiae was found to reduce cell growth and reactive oxygen species (ROS) generation upon exposure to oxidative stress; such expression enhanced that of high-affinity iron transport genes (FET3 and FTR1). The results suggested that the recombinant cells expressing H-ferritins induced cytosolic iron depletion. The present study analyzes metabolic changes under these circumstances via proteomic methods. The YGH2 yeast strain expressing H-ferritin, the YGH2-KG (E62K and H65G) mutant strain, and the YGT control strain were used. Comparative proteomic analysis showed that the synthesis of 34 proteins was at least stimulated in YGH2, whereas the other 37 proteins were repressed. Among these, the 31 major protein spots were analyzed via nano-LC/MS/MS. The increased proteins included major heat-shock proteins and proteins related to endoplasmic reticulum-associated degradation (ERAD). On the other hand, the proteins involved with folate metabolism, purine and methionine biosynthesis, and translation were reduced. In addition, we analyzed the insoluble protein fractions and identified the fragments of Idh1p and Pgk1p, as well as several ribosomal assembly-related proteins. This suggests that intracellular iron depletion induces imperfect translation of proteins. Although the proteins identified above result from changes in iron metabolism (i.e., iron deficiency), definitive evidence for iron-related proteins remains insufficient. Nevertheless, this study is the first to present a molecular model for iron deficiency, and the results may provide valuable information on the regulatory network of iron metabolism.  相似文献   

7.
Trisomy 21 (Down's syndrome) is the most common genetic cause of human mental retardation. In Down's syndrome (DS) patients, deteriorated glucose, lipid, purine, folate and methionine/homocysteine metabolism has been reported. In our study, we used a proteomic approach to evaluate protein expression of enzyme proteins of intermediary metabolism in the brain of Down's syndrome fetuses. In fetal DS brain, we detected increased protein levels of mitochondrial aconitase as well as NADP-linked isocitrate dehydrogenase, decreased protein expression of citrate synthase and cytosolic aspartate aminotransferase. From two spots that corresponded to either pyruvate kinase M1 or M2 isozymes, significant elevation was observed only in one, while the second spot as well as the sum of the spots showed no differences between DS and controls. These results suggest derangement of intermediary metabolism during prenatal development of DS individuals.  相似文献   

8.
Using an integrated approach incorporating proteomics, metabolomics and published mRNA data, we have investigated the effects of hydrogen peroxide on wild type and a Sty1p-deletion mutant of the fission yeast Schizosaccharomyces pombe. Differential protein expression analysis based on the modification of proteins with matched fluorescent labelling reagents (2-D-DIGE) is the foundation of the quantitative proteomics approach. This study identifies 260 differentially expressed protein isoforms from 2-D-DIGE gels using MALDI MS and reveals the complexity of the cellular response to oxidative stress and the dependency on the Sty1p stress-activated protein kinase. We show the relationship between these protein changes and mRNA expression levels identified in a parallel whole genome study, and discuss the regulatory mechanisms involved in protecting cells against hydrogen peroxide and the involvement of Sty1p-dependent stress-activated protein kinase signalling. Metabolomic profiling of 29 intermediates using 1H NMR was also conducted alongside the protein analysis using the same sample sets, allowing examination of how the protein changes might affect the metabolic pathways and biological processes involved in the oxidative stress response. This combined analysis identifies a number of interlinked metabolic pathways that exhibit stress- and Sty1-dependent patterns of regulation.  相似文献   

9.
A new approach for qualitative and quantitative proteomic analysis using capillary liquid chromatography and mass spectrometry to study the protein expression response in mycobacteria following isoniazid treatment is discussed. In keeping with known effects on the fatty acid synthase II pathway, proteins encoded by the kas operon (AcpM, KasA, KasB, Accd6) were significantly overexpressed, as were those involved in iron metabolism and cell division suggesting a complex interplay of metabolic events leading to cell death.  相似文献   

10.
Selected reaction monitoring allows quantitative measurements of proteins over several orders of magnitude in complex biological samples. Here we present a targeted approach for quantification of 19 enzymes from Corynebacterium glutamicum applying isotope dilution mass spectrometry coupled to high performance liquid chromatography (IDMS-LC-MS/MS). Investigations of protein dynamics upon growth on acetate and glucose as sole carbon source shows highly stable peptide amounts for enzymes of the central carbon metabolism during the transition phase and after substrate depletion. However significant adaptations of protein amounts are observed between both growth conditions well agreeing with known changes in metabolic fluxes. Time-resolved measurements of protein expression after metabolic switch from glycolytic to gluconeogenetic conditions reveal fast responses in protein synthesis rates for glyoxylate shunt enzymes.  相似文献   

11.
Haemophilus influenzae transits between niches within the human host that are predicted to differ in oxygen levels. The ArcAB two-component signal transduction system controls gene expression in response to respiratory conditions of growth and has been implicated in bacterial pathogenesis, yet the mechanism is not understood. We undertook a genome-scale study to identify genes of the H. influenzae ArcA regulon. Deletion of arcA resulted in increased anaerobic expression of genes of the respiratory chain and of H. influenzae's partial tricarboxylic acid cycle, and decreased anaerobic expression levels of genes of polyamine metabolism, and iron sequestration. Deletion of arcA also conferred a susceptibility to transient exposure to hydrogen peroxide that was greater following anaerobic growth than after aerobic growth. Array data revealed that the dps gene, not previously assigned to the ArcA modulon in bacteria, exhibited decreased expression in the arcA mutant. Deletion of dps resulted in hydrogen peroxide sensitivity and complementation restored resistance, providing insight into the previously uncharacterized mechanism of arcA-mediated H(2)O(2) resistance. The results indicate a role for H. influenzae arcA and dps in pre-emptive defence against transitions from growth in low oxygen environments to aerobic exposure to hydrogen peroxide, an antibacterial oxidant produced by phagocytes during infection.  相似文献   

12.
Amniocentesis is a valuable and standard procedure for prenatal diagnosis of genetic or inborn errors of metabolism. Amnion cells are cultivated and chromosomes or proteins can be examined to provide molecular diagnosis. Mainly individual proteins are searched for based upon pedigrees and/or anamnesis. As inborn errors of metabolism involve a vast diversity of metabolic enzymes, we aimed to find a screening method for a large series of metabolic enzymes. Amnion cells were obtained from amniocentesis and subjected to proteomic analysis. We used two-dimensional gel electrophoresis with in-gel digestion followed by matrix-assisted laser desorption/ionization-time of flight analysis, to identify metabolic enzymes. Furthermore, we compared metabolic proteins in amnion cells from controls with those from Down Syndrome (DS). Enzymes involved in carbohydrate handling, amino acid handling, -purine metabolism and intermediary metabolism as well as miscellaneous metabolic pathways were detected. Protein levels of several enzymes were significantly deranged in samples obtained from patients with DS. This approach, with the advantage of the concomitant determination of many enzyme proteins, may form the basis for future metabolic screens when amniocentesis is carried out.  相似文献   

13.
Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.  相似文献   

14.
In response to environmental signals in the host, bacterial pathogens express factors required during infection and repress those that interfere with specific stages of this process. Signalling pathways controlling virulence factors of the human respiratory pathogen, Haemophilus influenzae, are predominantly unknown. The lipooligosaccharide (LOS) outer core represents a prototypical virulence trait of H. influenzae that enhances virulence but also provides targets for innate and adaptive immunity. We report regulation of the display of the virulence-associated phosphorylcholine (PC) epitope on the LOS in response to environmental conditions. PC display is optimal under microaerobic conditions and markedly decreased under conditions of high culture aeration. Gene expression analysis using a DNA microarray was performed to begin to define the metabolic state of the cell under these conditions and to identify genes potentially involved in PC epitope modulation. Global gene expression profiling detected changes in redox responsive genes and in genes of carbohydrate metabolism. The effects on carbohydrate metabolism led us to examine the role of the putative H. influenzae homologue of csrA, a regulator of glycolysis and gluconeogenesis in Escherichia coli. A mutant containing an in-frame deletion of the H. influenzae csrA gene showed increased PC epitope levels under aerobic conditions. Furthermore, deletion of csrA elevated mRNA expression of galU, an essential virulence gene that is critical in generating sugar precursors needed for polysaccharide formation and LOS outer core synthesis. Growth conditions predicted to alter the redox state of the culture modulated the PC epitope and galU expression as well. The results are consistent with a multifactorial mechanism of control of LOS-PC epitope display involving csrA and environmental signals that coordinately regulate biosynthetic and metabolic genes controlling the LOS structure.  相似文献   

15.
16.
17.
Adipocytes secrete many proteins that regulate metabolic functions. The gene inter-α (globulin) inhibitor H5 (ITIH-5) encodes a secreted protein and is known to be expressed abundantly in the placenta. However, using gene expression profiles data we observed high expression of ITIH-5 in adipose tissue. The aim of this study was to test the hypothesis that ITIH-5 is strongly expressed in human adipocytes and adipose tissue, and is related to obesity and clinical metabolic variables. ITIH-5 adipose tissue mRNA expression was analyzed with DNA microarray and real-time PCR, and its association with clinical variables was examined. ITIH-5 protein expression was analyzed using western blot. ITIH-5 mRNA expression was abundant in human adipose tissue, adipocytes, and placenta, and higher in subcutaneous (sc) compared to omental adipose tissue (P < 0.0001). ITIH-5 mRNA and protein expression in sc adipose tissue were higher in obese compared to lean subjects (P < 0.0001 and P < 0.001, respectively). ITIH-5 mRNA expression was reduced after diet-induced weight loss (P < 0.0001). ITIH-5 mRNA expression was associated with anthropometry and clinical metabolic variables. In conclusion, ITIH-5 is highly expressed in sc adipose tissue, increased in obesity, down regulated after weight loss, and associated with measures of body size and metabolism. Together, this indicates that ITIH-5 merits further investigation as a regulator of human metabolism.  相似文献   

18.
Proteomic sensitivity to dietary manipulations in rainbow trout   总被引:6,自引:0,他引:6  
Changes in dietary protein sources due to substitution of fish meal by other protein sources can have metabolic consequences in farmed fish. A proteomics approach was used to study the protein profiles of livers of rainbow trout that have been fed two diets containing different proportions of plant ingredients. Both diets control (C) and soy (S) contained fish meal and plant ingredients and synthetic amino acids, but diet S had a greater proportion of soybean meal. A feeding trial was performed for 12 weeks at the end of which, growth and protein metabolism parameters were measured. Protein growth rates were not different in fish fed different diets; however, protein consumption and protein synthesis rates were higher in the fish fed the diet S. Fish fed diet S had lower efficiency of retention of synthesised protein. Ammonia excretion was increased as well as the activities of hepatic glutamate dehydrogenase and aspartate amino transferase (ASAT). No differences were found in free amino acid pools in either liver or muscle between diets. Protein extraction followed by high-resolution two-dimensional electrophoresis, coupled with gel image analysis, allowed identification and expression of hundreds of protein. Individual proteins of interest were then subjected to further analysis leading to protein identification by trypsin digest fingerprinting. During this study, approximately 800 liver proteins were analysed for expression pattern, of which 33 were found to be differentially expressed between diets C and S. Seventeen proteins were positively identified after database searching. Proteins were identified from diverse metabolic pathways, demonstrating the complex nature of gene expression responses to dietary manipulation revealed by proteomic characterisation.  相似文献   

19.
Mammalian cells, under typical cultivation conditions, produce large quantities of lactate and ammonia that affect cell growth adversely and result in low cell concentration. Controlled nutrient feeding to maintain low concentrations of glucose and glutamine reduces metabolite production drastically, altering the metabolism of the cells. This metabolic shift results in higher cell concentration in continuous cultures and does not affect the specific productivity of the cells. We have taken a proteomics approach to investigate the differential protein expression with metabolic shift. Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), we have found at least eight differentially expressed spots; two proteins were down-regulated, and the others were up-regulated with metabolic shift. These included metabolic enzymes, the brain form of phosphoglycerate mutase, which was down-regulated, and the precursor of the 23 kDa subunit of NADH-ubiquinone oxidoreductase, which was up-regulated. Another enzyme, the L1 isozyme of ubiquitin carboxyl-terminal hydrolase, which is involved in protein turnover and degradation, was also up-regulated in the metabolically altered cells. The remaining down-regulated spot had been identified as two isoforms of cytoplasmic actins, while three of the up-regulated spots were viral GAG polyproteins from various murine viruses. An unidentified protein was also up-regulated in the cells with altered metabolic state. This study shows the potential of using a proteomics approach in deciphering the intracellular changes in cells with physiological changes such as metabolism shift. The new insight into cell metabolism afforded by this analysis will greatly facilitate process optimization of continuous cell cultures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号