首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patients with ulcerative colitis and Crohn's disease are at increased risk for developing colorectal cancer. To date, no known genetic basis has been identified to explain colorectal cancer predisposition in these inflammatory bowel diseases. Instead, it is assumed that chronic inflammation is what causes cancer. This is supported by the fact that colon cancer risk increases with longer duration of colitis, greater anatomic extent of colitis, the concomitant presence of other inflammatory manifestations such as primary sclerosing cholangitis, and the fact that certain drugs used to treat inflammation, such as 5-aminosalicylates and steroids, may prevent the development of colorectal cancer. The major carcinogenic pathways that lead to sporadic colorectal cancer, namely chromosomal instability, microsatellite instability, and hypermethylation, also occur in colitis-associated colorectal cancers. Unlike normal colonic mucosa, however, inflamed colonic mucosa demonstrates abnormalities in these molecular pathways even before any histological evidence of dysplasia or cancer. Whereas the reasons for this are unknown, oxidative stress likely plays a role. Reactive oxygen and nitrogen species produced by inflammatory cells can interact with key genes involved in carcinogenic pathways such as p53, DNA mismatch repair genes, and even DNA base excision-repair genes. Other factors such as NF-kappaB and cyclooxygenases may also contribute. Administering agents that cause colitis in healthy rodents or genetically engineered cancer-prone mice accelerates the development of colorectal cancer. Mice genetically prone to inflammatory bowel disease also develop colorectal cancer especially in the presence of bacterial colonization. These observations offer compelling support for the role of inflammation in colon carcinogenesis.  相似文献   

2.
Sporadic adenoma or adenocarcinoma is often detected during endoscopic surveillance of patients with ulcerative colitis (UC). However, it is occasionally difficult to distinguish these neoplasms from dysplasia or colitis-associated cancers because of the influence of inflammation. However, the influence of inflammation on sporadic neoplasms is not well characterised. To assess this influence, we established a long-term inflammation model of colon cancer cells by inflammatory stimulation with tumour necrosis factor-α, flagellin and interleukin-1β for 60 weeks. Then, the malignant phenotypes were evaluated using the MTS assay, Annexin V fluorescence assay, cell migration assay and sphere formation assay. The influence of P53 function on these phenotypes was assessed with a TP53 mutation model using the CRISPR/Cas9 system. A long-term inflammation model of LS174T cells was established for the first time with continuous inflammatory signalling. Chronic inflammation induced apoptosis and suppressed the proliferation and stemness of these cancer cells via the action of P53. It also enhanced the invasiveness of LS174T cells. Moreover, these phenotypic changes and changes in inflammatory signalling were recoverable after the removal of inflammatory stimuli, suggesting that colon cancer cells have higher plasticity than normal intestinal epithelial cells. In conclusion, our results suggest that sporadic neoplasms in patients with UC are affected by chronic inflammation but are not essentially altered.  相似文献   

3.
Reduced short-chain fatty acids (SCFAs) have been reported in patients with ulcerative colitis, and increased intake of dietary fiber has shown to be clinically beneficial for colitis. Whether SCFAs suppress tumorigenesis in colitis-associated colorectal cancer remains unknown. The chemopreventive effect of SCFAs in colitis-associated colorectal cancer was evaluated in this study. Model of colitis-associated colorectal cancer in male BALB/c mice was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS). SCFAs mix (67.5 mM acetate, 40 mM butyrate, 25.9 mM propionate) was administered in drink water during the study period. Macroscopic and histological studies were performed to examine the colorectal inflammation and tumorigenesis in AOM/DSS-induced mice treated with or without SCFA mix. The effects of SCFAs mix on colonic epithelial cellular proliferation were also assessed using Ki67 immunohistochemistry and TUNEL staining. The administration of SCFAs mix significantly reduced the tumor incidence and size in mice with AOM/DSS-induced colitis associated colorectal cancer. SCFAs mix protected from AOM/DSS-induced colorectal cancer by improving colon inflammation and disease activity index score as well as suppressing the expression of proinflammatory cytokines including IL-6, TNF-α and IL-17. A decrease in cell proliferation markers and an increase in TUNEL-positive tumor epithelial cells were also demonstrated in AOM/DSS mice treated with SCFAs mix. SCFAs mix administration prevented development of tumor and attenuated the colonic inflammation in a mouse model of colitis-associated colorectal cancer. SCFAs mix may be a potential agent in the prevention and treatment of colitis-associated colorectal cancer.  相似文献   

4.
Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified.  相似文献   

5.
Animal models of inflammatory bowel disease (IBD) and colorectal cancer (CRC) have provided significant insight into the cell intrinsic and extrinsic mechanisms that contribute to the onset and progression of intestinal diseases. The identification of new molecules that promote these pathologies has led to a flurry of activity focused on the development of potential new therapies to inhibit their function. As a result, various pre-clinical mouse models with an intact immune system and stromal microenvironment are now heavily used. Here we describe three experimental protocols to test the efficacy of new therapeutics in pre-clinical models of (1) acute mucosal damage, (2) chronic colitis and/or colitis-associated colon cancer, and (3) sporadic colorectal cancer. We also outline procedures for serial endoscopic examination that can be used to document the therapeutic response of an individual tumor and to monitor the health of individual mice. These protocols provide complementary experimental platforms to test the effectiveness of therapeutic compounds shown to be well tolerated by mice.  相似文献   

6.
Studies in recent years have identified a pivotal role of the cytokine IL-23 in the pathogenesis of inflammatory bowel diseases (IBD: Crohn´s disease, ulcerative colitis) and colitis-associated colon cancer. Genetic studies revealed that subgroups of IBD patients have single nucleotide polymorphisms in the IL-23R gene suggesting that IL-23R signaling affects disease susceptibility. Furthermore, increased production of IL-23 by macrophages, dendritic cells or granulocytes has been observed in various mouse models of colitis, colitis-associated cancer and IBD patients. Moreover, in several murine models of colitis, suppression of IL-12/IL-23 p40, IL-23 p19 or IL-23R function led to marked suppression of gut inflammation. This finding was associated with reduced activation of IL-23 target cells such as T helper 17 cells, innate lymphoid cells type 3, granulocytes and natural killer cells as well as with impaired production of proinflammatory cytokines. Based on these findings, targeting of IL-23 emerges as important concept for suppression of gut inflammation and inflammation-associated cancer growth. Consistently, neutralizing antibodies against IL-12/IL-23 p40 and IL-23 p19 have been successfully used in clinical trials for therapy of Crohn´s disease and pilot studies in ulcerative colitis are ongoing. These findings underline the crucial regulatory role of IL-23 in chronic intestinal inflammation and colitis-associated cancer and indicate that therapeutic strategies aiming at IL-23 blockade may be of key relevance for future therapy of IBD patients.  相似文献   

7.
GPR65 (TDAG8) is a proton-sensing G protein-coupled receptor predominantly expressed in immune cells. Genome-wide association studies (GWAS) have identified GPR65 gene polymorphisms as an emerging risk factor for the development of inflammatory bowel disease (IBD). Patients with IBD have an elevated risk of developing colorectal cancer when compared to the general population. To study the role of GPR65 in intestinal inflammation and colitis-associated colorectal cancer (CAC), colitis and CAC were induced in GPR65 knockout (KO) and wild-type (WT) mice using dextran sulfate sodium (DSS) and azoxymethane (AOM)/DSS, respectively. Disease severity parameters such as fecal score, colon shortening, histopathology, and mesenteric lymph node enlargement were aggravated in GPR65 KO mice compared to WT mice treated with DSS. Elevated leukocyte infiltration and fibrosis were observed in the inflamed colon of GPR65 KO when compared to WT mice which may represent a cellular mechanism for the observed exacerbation of intestinal inflammation. In line with high expression of GPR65 in infiltrated leukocytes, GPR65 gene expression was increased in inflamed intestinal tissue samples of IBD patients compared to normal intestinal tissues. Moreover, colitis-associated colorectal cancer development was higher in GPR65 KO mice than WT mice when treated with AOM/DSS. Altogether, our data demonstrate that GPR65 suppresses intestinal inflammation and colitis-associated tumor development in murine colitis and CAC models, suggesting potentiation of GPR65 with agonists may have an anti-inflammatory therapeutic effect in IBD and reduce the risk of developing colitis-associated colorectal cancer.  相似文献   

8.
Nonresolving inflammatory processes affect all stages of carcinogenesis. Lactoferrin, a member of the transferrin family, is involved in the innate immune response and anti-inflammatory, anti-microbial, and anti-tumor activities. We previously found that lactoferrin is significantly down-regulated in specimens of nasopharyngeal carcinoma (NPC) and negatively associated with tumor progression, metastasis, and prognosis of patients with NPC. Additionally, lactoferrin expression levels are decreased in colorectal cancer as compared with normal tissue. Lactoferrin levels are also increased in the various phases of inflammation and dysplasia in an azoxymethane–dextran sulfate sodium (AOM-DSS) model of colitis-associated colon cancer (CAC). We thus hypothesized that the anti-inflammatory function of lactoferrin may contribute to its anti-tumor activity. Here we generated a new Lactoferrin knockout mouse model in which the mice are fertile, develop normally, and display no gross morphological abnormalities. We then challenged these mice with chemically induced intestinal inflammation to investigate the role of lactoferrin in inflammation and cancer development. Lactoferrin knockout mice demonstrated a great susceptibility to inflammation-induced colorectal dysplasia, and this characteristic may be related to inhibition of NF-κB and AKT/mTOR signaling as well as regulation of cell apoptosis and proliferation. Our results suggest that the protective roles of lactoferrin in colorectal mucosal immunity and inflammation-related malignant transformation, along with a deficiency in certain components of the innate immune system, may lead to serious consequences under conditions of inflammatory insult.  相似文献   

9.
BackgroundPatients with inflammatory bowel disease are at increased risks of developing ulcerative colitis-associated colorectal cancer (CAC). Vitexin can suppress the proliferation of colorectal carcinoma cells in vitro orin vivo. However, different from colorectal carcinoma, CAC is more consistent with the transformation from inflammation to cancer in clinical chronic IBD patients. Therefore, we aim to investigated that vitexin whether possess benefic effects on CAC mice.PurposeWe aimed to determine the beneficial effects of vitexin on CAC mice and reveal its underlying mechanism.MethodsThe mouse CAC model was induced by Azoxymethane and dextran sodium sulfate (AOM/DSS) and CAC mice were treated with vitexin. At the end of this study, inflammatory cytokines of IL-1β, IL-6, TNF-α, IL-10 as well as nitric oxide (NO) were detected by kits after long-term treatment of vitexin. Pathological changes and macrophage polarization were determined by H&E and immunofluorescence in adjacent noncancerous tissue and carcinomatous tissue respectively of CAC mice.ResultsOur results showed that oral administration of vitexin could significantly improve the clinical signs and symptoms of chronic colitis, relieve colon damage, regulate colonic inflammatory cytokines, as well as suppress tumor incidence and tumor burden. Interesting, vitexin caused a significant increase in serum level of NO and a higher content of NO in tumor tissue. In addition, vitexin significantly decreased M1 phenotype macrophages in the adjacent noncancerous tissue, while markedly up-regulated M1 macrophage polarization in the tumor tissue in the colon of CAC mice.ConclusionVitexin can attenuate chronic colitis-associated carcinogenesis induced by AOM/DSS in mice and its protective effects are partly associated with its alternations in macrophage polarization in the inflammatory and tumor microenvironment .  相似文献   

10.
Tumor necrosis factor-α-induced protein 8 (TNFAIP8 or TIPE) is a member of the TNFAIP8 family. While TIPE was broadly considered to be pro-cancerous, its precise roles in carcinogenesis especially those of the intestinal tract are not clear. Here, we show that genetic deletion of TIPE in mice exacerbated chemical-induced colitis and colitis-associated colon cancer. Loss of TIPE exacerbated inflammatory responses and inflammation-associated dysbiosis, leading to the activation of NF-κB and STAT3, and it also accelerated dysplasia, DNA damage and proliferation of intestinal epithelial cells. We further show that colon microbiota were essential for increased tumor growth and progression in Tipe−/− mice. The tumor suppressive function of TIPE originated primarily from the non-hematopoietic compartment. Importantly, TIPE was downregulated in human colorectal cancers, and patients with low levels of Tipe mRNA were associated with reduced survival. These results indicate that TIPE serves as an important modulator of colitis and colitis-associated colon cancer.Subject terms: Cancer microenvironment, Chronic inflammation  相似文献   

11.
Colorectal cancer is the second most common type of cancer both in Europe and Poland. During the last 30 years more than a 3-fold increase has been observed in Poland due to environmental and genetic factors. Almost all colorectal malignancies are related to the formation and malignant transformation of colorectal dysplasia and adenoma. Efforts aiming to decrease the number of colorectal cancer deaths are focused on the disease early detection. Genetic diagnosis for hereditary syndromes predisposing to colorectal cancer has been developed and is a part of the routine treatment. Most cancers are sporadic. They often develop from polyps in the colon. In addition to the genetic events described in the 1990s, showing the adenoma transformation into carcinoma that has been a prime example of malignant transformation for a long time, there are also other possibilities of neoplastic transformation. The recognition of colorectal cancer risk factors make sense as their nature is lifestyle- and diet-related. In this review paper those risk factors are presented and the prevention of colorectal cancer is discussed taking into account genetic factors.  相似文献   

12.
Individuals with inflammatory bowel disease (IBD), such as Crohn''s disease (CD) or ulcerative colitis (UC) are at increased risk of developing colorectal cancer (CRC) over healthy individuals. This risk is proportional to the duration and extent of disease, with a cumulative incidence as high as 30% in individuals with longstanding UC with widespread colonic involvement.1 Colonic dysplasia in IBD and colitis associated cancer (CAC) are believed to develop as a result of repeated cycles of epithelial cell injury and repair while these cells are bathed in a chronic inflammatory cytokine milieu.2 While spontaneous and colitis-associated cancers share the quality of being adenocarcinomas, the sequence of underlying molecular events is believed to be different.3 This distinction argues the need for specific animal models of CAC.Several mouse models currently exist for the study of CAC. Dextran sulfate sodium (DSS), an agent with direct toxic effects on the colonic epithelium, can be administered in drinking water to mice in multiple cycles to create a chronic inflammatory state. With sufficient duration, some of these mice will develop tumors.4 Tumor development is hastened in this model if administered in a pro-carcinogenic setting. These include mice with genetic mutations in tumorigenesis pathways (APC, p53, Msh2), as well as mice pre-treated with genotoxic agents (azoxymethane [AOM], 1,2-dimethylhydrazine [DMH]).5 The combination of DSS with AOM as a model for colitis associated cancer has gained popularity for its reproducibility, potency, low price, and ease of use. Though they have a shared mechanism, AOM has been found to be more potent and stable in solution than DMH. While tumor development in other models generally requires several months, mice injected with AOM and subsequently treated with DSS develop adequate tumors in as little as 7-10 weeks.6, 7 Finally, AOM and DSS can be administered to mice of any genetic background (knock out, transgenic, etc.) without cross-breeding to a specific tumorigenic strain. Here, we demonstrate a protocol for inflammation-driven colonic tumorigenesis in mice utilizing a single injection of AOM followed by three seven-day cycles of DSS over a 10 week period. This model induces tumors with histological and molecular changes closely resembling those occurring in human CAC and provides a highly valuable model for the study of oncogenesis and chemoprevention in this disease.8  相似文献   

13.
The microsatellite instability (MSI) mutational pathway is critical to carcinogenesis in a small but significant proportion of colorectal cancers. While MSI is identified in most cancers in individuals with hereditary non-polyposis colorectal cancer, the majority of MSI tumors are found in individuals with sporadic disease. Colorectal cancers arising as a result of MSI have distinct clinicopathologic features distinguishing them from those with microsatellite stability. MSI colorectal cancers affect a larger percentage of women, are usually localized proximal to the splenic flexure, and have a higher incidence of synchronous and metachronous tumors. They are associated with a mucinous histology, tumor-infiltrating lymphocytes, a Crohn's-like inflammatory response, and a higher grade but lower stage. Overall survival is better in individuals with MSI. The benefit of chemotherapy in MSI colorectal cancers, with and without lymph node metastases, remains unclear.  相似文献   

14.
Inflammatory bowel disease (IBD) is a disorder of chronic inflammation with increased susceptibility to colorectal cancer. The etiology of IBD is unclear but thought to result from a dysregulated adaptive and innate immune response to microbial products in a genetically susceptible host. Toll-like receptor (TLR) signaling induced by intestinal commensal bacteria plays a crucial role in maintaining intestinal homeostasis, innate immunity and the enhancement of intestinal epithelial cell (IEC) integrity. However, the role of TLR2 in the development of colorectal cancer has not been studied. We utilized the AOM-DSS model for colitis-associated colorectal cancer (CAC) in wild type (WT) and TLR2(-/-) mice. Colons harvested from WT and TLR2(-/-) mice were used for histopathology, immunohistochemistry, immunofluorescence and cytokine analysis. Mice deficient in TLR2 developed significantly more and larger colorectal tumors than their WT controls. We provide evidence that colonic epithelium of TLR2(-/-) mice have altered immune responses and dysregulated proliferation under steady-state conditions and during colitis, which lead to inflammatory growth signals and predisposition to accelerated neoplastic growth. At the earliest time-points assessed, TLR2(-/-) colons exhibited a significant increase in aberrant crypt foci (ACF), resulting in tumors that developed earlier and grew larger. In addition, the intestinal microenvironment revealed significantly higher levels of IL-6 and IL-17A concomitant with increased phospho-STAT3 within ACF. These observations indicate that in colitis, TLR2 plays a protective role against the development of CAC.  相似文献   

15.
Selenium (Se) is an essential micronutrient that exerts its functions via selenoproteins. Little is known about the role of Se in inflammatory bowel disease (IBD). Epidemiological studies have inversely correlated nutritional Se status with IBD severity and colon cancer risk. Moreover, molecular studies have revealed that Se deficiency activates WNT signaling, a pathway essential to intestinal stem cell programs and pivotal to injury recovery processes in IBD that is also activated in inflammatory neoplastic transformation. In order to better understand the role of Se in epithelial injury and tumorigenesis resulting from inflammatory stimuli, we examined colonic phenotypes in Se-deficient or -sufficient mice in response to dextran sodium sulfate (DSS)-induced colitis, and azoxymethane (AOM) followed by cyclical administration of DSS, respectively. In response to DSS alone, Se-deficient mice demonstrated increased morbidity, weight loss, stool scores, and colonic injury with a concomitant increase in DNA damage and increases in inflammation-related cytokines. As there was an increase in DNA damage as well as expression of several EGF and TGF-β pathway genes in response to inflammatory injury, we sought to determine if tumorigenesis was altered in the setting of inflammatory carcinogenesis. Se-deficient mice subjected to AOM/DSS treatment to model colitis-associated cancer (CAC) had increased tumor number, though not size, as well as increased incidence of high grade dysplasia. This increase in tumor initiation was likely due to a general increase in colonic DNA damage, as increased 8-OHdG staining was seen in Se-deficient tumors and adjacent, non-tumor mucosa. Taken together, our results indicate that Se deficiency worsens experimental colitis and promotes tumor development and progression in inflammatory carcinogenesis.  相似文献   

16.
Background: Endoscopic surveillance of pre‐malignant gastric lesions may add to gastric cancer prevention. However, the appropriate biopsy regimen for optimal detection of the most advanced lesions remains to be determined. Therefore, we evaluated the yield of endoscopic surveillance by standardized and targeted biopsy protocols. Materials and Methods: In a prospective, multi‐center study, patients with intestinal metaplasia (IM) or dysplasia (DYS) underwent a surveillance gastroscopy. Both targeted biopsies from macroscopic lesions and 12 non‐targeted biopsies according to a standardized protocol (antrum, angulus, corpus, cardia) were obtained. Appropriate biopsy locations and the yield of targeted versus non‐targeted biopsies were evaluated. Results: In total, 112 patients with IM (n = 101), or low‐grade (n = 5) and high‐grade DYS (n = 6) were included. Diagnosis at surveillance endoscopy was atrophic gastritis (AG) in one, IM in 77, low‐grade DYS in two, high‐grade DYS in three, and gastric cancer in one patient. The angulus (40%), antrum (35%) and lesser curvature of the corpus (33%) showed the highest prevalence of pre‐malignant conditions. Non‐targeted biopsies from the lesser curvature had a significantly higher yield as compared to the greater curvature of the corpus in diagnosing AG and IM (p = .05 and p = .03). Patients with extensive intragastric IM, which was also present at the cardia were at high risk of a concurrent diagnosis of dysplasia or gastric cancer. High‐grade DYS was detected in targeted biopsies only. Conclusions: At surveillance endoscopies, both targeted and non‐targeted biopsies are required for an appropriate diagnosis of (pre‐)malignant gastric lesions. Non‐targeted biopsies should be obtained in particular from the antrum, angulus and lesser curvature of the corpus.  相似文献   

17.
Evidence supports involvement of microflora in the transition of chronic inflammation to neoplasia. We investigated the protective efficacy of the probiotic VSL#3 in a model of colitis-associated colorectal cancer. Chronic colitis was induced in Sprague-Dawley rats by administration of trinitrobenzene sulfonic acid (TNBS), followed 6 wk later by systemic reactivation. To induce colitis-associated dysplasia and cancer, the animals received TNBS (intravenously) twice a week for 10 wk. One group received VSL#3 in drinking water from 1 wk before colitis induction until death. The colons were examined for damage and presence of dysplasia or cancer. Samples were analyzed for cell proliferation and apoptosis, vitamin D receptor (VDR) expression, angiogenic factors, and presence of alkaline sphingomyelinase or phosphatase. Microbial community composition was evaluated by terminal restriction fragment-length polymorphism analysis of the bacterial 16S rRNA gene. None of the probiotic-treated animals developed carcinoma, and no high-grade dysplasia was found in either the proximal or mid colon. In contrast, 29% of the animals in the control group developed carcinoma in one or more regions of the colon. VSL#3-treated animals had significantly less damage than the vehicle treated-controls in all areas of the colon, and this correlated with decreased richness and diversity of the mucosally adherent microbiota. Treatment with the probiotic increased the antiangiogenic factor angiostatin, VDR expression, and alkaline sphingomyelinase. We concluded that pretreatment with the probiotic VSL#3 can attenuate various inflammatory-associated parameters, delaying transition to dysplasia and cancer, thus offering its potential therapeutic use in patients with long-standing colitis.  相似文献   

18.
Epithelial cell MUC1 is aberrantly expressed on human epithelial adenocarcinomas where it functions as a regulator of immune responses and an oncogene. Normally expressed at low levels in healthy colonic epithelium, MUC1 was reported to be overexpressed in human inflammatory bowel disease (IBD) and thus may be expected to play an important role in regulating chronic inflammation and its progression to colitis-associated colon cancer. Studies in the immunobiology and pathology of IBD and colitis-associated colon cancer have been done in various mouse models but none could properly address the role of MUC1 due to low homology between the mouse and the human molecule. We report that IL-10(-/-) mice, a widely accepted mouse model of IBD, crossed to human MUC1-transgenic mice, develop MUC1(+) IBD characterized by an earlier age of onset, higher inflammation scores, and a much higher incidence and number of colon cancers compared with IL-10(-/-) mice.  相似文献   

19.
Ulcerative colitis and colonic Crohn's disease (together known as inflammatory bowel disease or IBD) are both associated with increased risk for colorectal cancer. Although it is customary to emphasize differences in the biology of IBD-associated and sporadic colon cancer, we believe these are far outweighed by the similarities. These similarities suggest that they might have similar pathogenic mechanisms. Because the normal colon is arguably in a continual state of low-grade inflammation in response to its microbial flora, it is reasonable to speculate that both IBD-associated and sporadic colon cancer might be the consequence of bacteria-induced inflammation.  相似文献   

20.
The tumor necrosis factor (TNF) family member APRIL (A proliferation inducing ligand) is a disease promoter in B-cell malignancies. APRIL has also been associated with a wide range of solid malignancies, including colorectal cancer (CRC). As evidence for a supportive role of APRIL in solid tumor formation was still lacking, we studied the involvement of APRIL in CRC. We observed that ectopic APRIL expression exacerbates the number and size of adenomas in ApcMin mice and in a mouse model for colitis-associated colon carcinogenesis. Furthermore, knockdown of APRIL in primary spheroid cultures of colon cancer cells and both mouse and human CRC cell lines reduced tumor clonogenicity and in vivo outgrowth. Taken together, our data therefore indicate that both tumor-derived APRIL and APRIL produced by non-tumor cells is supportive in colorectal tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号