首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H‐984) grown in varying ratios of glucose‐corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first‐order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3) in G. fujikuroi. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1169–1180, 2013  相似文献   

2.
Gibberelic acid fermentation using extractive methods was carried out in the presence of corn oil and Alamine 336. Gibberella fujikuroi fungus (NRRL 2278) was used to produce gibberellic acid. Oleyl alcohol was a diluting agent for Alamine 336. The effects of oleyl alcohol (100%, v/v), corn oil (5–25%, v/v), the concentration of Alamine 336 in oleyl alcohol, and feeding air were examined in this study. According to the results, oleyl alcohol was not effective on the production. On the other hand, oleyl alcohol solutions containing 15–30% (v/v) Alamine 336 showed effects as a toxic substance. In order to reduce solvent toxicity, corn oil was used. Addition of corn oil increased the concentration of gibberellic acid 1.3-fold compared to the control. Then the effects of immobilization and co-immobilization on extractive gibberelic acid fermentation were investigated. The highest total gibberellic acid concentration of 158.9 mg/L was produced with immobilized cells and feeding air by using extractive fermentation. The yield of gibberellic acid increased about 2.6-fold compared with the shake-flask fermentation (60.5 mg/L) without organic solutions.  相似文献   

3.
The effect of silicone oil on gibberellic acid production was investigated using Gibberella fujikuroi and Aspergillus niger fungi. Silicone oil was used as an oxygen vector in the gibberellic acid production process. When silicone oil was used, gibberellic acid concentration increased with respect to the control run having A. niger and G. fujikuroi microorganisms 4.6 and 6.7 times, respectively.  相似文献   

4.
Summary The continuous production of gibberellic acid with immobilized mycelia of Gibberella fujikuroi was maintained over a hundred days in a tubular fixed-bed reactor. Free mycelium at the beginning of the storage phase was harvested from G. fujikuroi shake-flask culture and was immobilized by ionotropic gelation in calcium alginate beads.The continuous recycle production system consisted of a fixed-bed reactor, a container in which the culture medium was heated, stirred and aerated, and valves for sample withdrawal or reactant addition during the first 1320 h (55 days). A two-phase continuous extractor was then added for the last 960 hours (40 days). Free and immobilized mycelium shake-flask cultures with the same strain used in the continuous culture system were also realized to compare growth, maintenance and production parameters. The results show about the same gibberellic acid productivity in both free and immobilized mycelium shakeflask cultures: 0.384 and 0.408 mgGA3·gBiomass-1 ·day-1, respectively, whereas in the continuous system the gibberellic acid production is about twice as large for a similar biomass: 0.768 mgGA3·gBiomass-1·day-1. Several factors affecting the overall productivity of the immobilized systems were found to be: the quality and the quantity of mycelia in the biocatalyst beads and the immobilization conditions.  相似文献   

5.
Summary The performance of immobilized growing cells of Gibberella fujikuroi P-3 was affected by the immobilization agent used, nature and age of cells, mycelial cell density, size of beads and inclusion of linseed oil. The beads, prepared by using standardized procedures, could be used for 8 cycles without affecting productivity in semicontinuous culture. The rate of production of gibberellic acid was 0.58–0.66 mg/l/h. An inverted conical fluidized bioreactor, based on the design employed in continuous plant cell culture, was adopted. This bioreactor offers many advantages. The pigment produced by the fungus is not similar to bikaverin, norbikaverin and O-dimethylanhydrofusarubin, the known polyketides.  相似文献   

6.
Stimulation of Aspergillus niger in submerged culture using a commonly known precursor, mevalonic acid (MVA), was investigated in terms of growth and gibberellic acid production. Increasing concentrations of MVA up to 60 M enhanced product and growth yields. Above this amount, gibberellic acid yields and growth were gradually decreased.  相似文献   

7.
The production of gibberellin A7 by Gibberella fujikuroi was studied by using newly devised assay method. Gibberellin A7 increased at preferable temperature range between 32°C and 34°C at the controlled pH(6.0~7.5). The improved isolation process by using column chromatography composed of granular charcoal was found to be extremely convenient, because of its quick elution with satisfactory separation from gibberellic acid which is always accompanied by gibberellin A7 in culture medium.  相似文献   

8.
The conversion of ent-kaur-16-enes to gibberellic acid in Gibberella fujikuroi is blocked by A-ring modifications. Thus ent-3β-hydroxykaur-16-en-19-yl succinate gives good conversion (46%) to the 7β-hydroxy derivative.* Under the same conditions the 3β-epimer gives 7β- or 6α-hydroxylation and the former occurs for the 3-oxo analogue. The succinoyloxy function acts as a less efficient block and ent-kaur-16-en-19-yl succinate is converted to 7β-hydroxy and 6β,7β-dihydroxy derivatives along with gibberellic acid. Hydrolysis of the succinate block of the metabolities provides the 7β, 19-diol and 6β,7β, 19-triol. Of this pair only the former was effectively metabolized to gibberellic acid in G. fujikuroi.  相似文献   

9.
Constraints created by immobilization conditions modified the physiological behavior and morphological characteristics of Gibberella fujikuroi mycelia in comparison with their development in free-cell conditions. G. fujikuroi mycelia were immobilized in different support matrices (polyurethane, carrageenan, and alginate) and showed a variety of reactions in response to the different microenvironmental factors encountered during and after immobilization. The best support with respect to gibberellic acid yield and biocatalyst stability was found to be an alginate with a high degree of polymerization. The most visible effects of immobilization included changes in growth development, morphological appearance, metabolite production, mycelial pigmentation, mycelial viability under starvation conditions, and induction of resting forms when previously immobilized mycelia were subcultured.  相似文献   

10.
In Gibberella fujikuroi cultures, ent-[3β-3H,17-14C]kaurene is converted to gibberellic acid with retention of the tritium label at the 3α-position. This evidence for the stereochemistry of 3-hydroxylation also permits the stereochemistry of the ‘proton-initiated’ cyclization step in gibberellic acid biosynthesis to be deduced.  相似文献   

11.
Crude rapeseed oil and post-refining fatty acids were used as substrates for oxalic acid production by a mutant of Aspergillus niger. Both the final concentration and the yield of the product were highest at pH 4 to 5. With a medium containing 50 g lipids l–1, production reached a maximum of 68 g oxalic acid l–1 after 7 d. A high yield of the product (up to 1.4 g oxalic acid g–1 lipids consumed) was achieved with oil and fatty acids combined.  相似文献   

12.
With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which had previously been identified by using genome-scale stoichiometric metabolic model simulations. The acl gene was deleted using the bipartite gene-targeting method, and the mutant was characterized in batch cultivation. It was found that the succinic acid yield was increased threefold by deleting the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger.  相似文献   

13.
Summary A transformation system for Gibberella fujikuroi based on the Aspergillus niger nitrate reductase gene (niaD) was developed. A strain (designated SG140) carrying a non-reverting niaD mutation (niaD11) was generated by screening mutagenised cells for non-growth on nitrate as sole nitrogen source. Transformation frequencies of 1–2 transformants per g DNA were observed when strain SG140 was transformed to nitrate utilisation. Southern blot analyses of niaD+ transformants showed that the vector DNA sequences were integrated into the chromosomal DNA. The results demonstrate that the A. niger niaD gene is expressed in G. fujikuroi.  相似文献   

14.
Although a lot of research has been done into modelling microbial processes, the applicability of these concepts to problems specific for bioreactor design and optimization of process conditions is limited. This is partly due to the tendency to separate the two essential factors of bioreactor modelling, i.e. physical transport processes and microbial kinetics. The deficiencies of these models become especially evident in industrial production processes where O2 supply is likely to become the limiting factor, e.g. production of gibberellic acid and other organic acids. Hydrodynamics, mass transfer and rheology of gibberellic acid production by Gibberella fujikuroi in an airlift bioreactor is presented in this work. Important hydrodynamic parameters such as gas holdup, liquid velocity in the riser and in the downcomer, and mixing time were determined and correlated with superficial gas velocity in the riser. Mass transfer was studied evaluating the volumetric mass transfer coefficient, which was determined as a function of superficial gas velocity in the riser and as a function of fermentation time. Culture medium rheology was studied through fermentation time and allowed to explain the volumetric mass transfer coefficient behaviour. Rheological behaviour was explained in terms of changes in the morphology of the fungus. Finally, rheological studies let us obtain correlations for gas holdup and volumetric mass transfer coefficient estimation using the superficial gas velocity in the riser and the culture medium apparent viscosity.  相似文献   

15.
Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.  相似文献   

16.
The influence of two mixing systems on the principal parameters of mycelial fermentations of Aspergillus niger, Fusicoccum amygdali Del. and Fusarium moniliforme Sheld. as well as their metabolite citric acid, fusicoccin and gibberellic acid production was analyzed from the viewpoint of flow energy distribution in a bioreactor. The growth and metabolite synthesis during fermentation was compared under different mixing conditions in the fermenter FU-8 with a turbine mixing system (TMS) and a counterflow mixing system (CMS). It was found that the growth, productivity and respiration characteristics as well as the morphology of these cultures varied dependent on the mixing system and agitation regime used. The counterflow mixing system was more favourable for large agglomerates (F. amygdali) or soft pellets (A. niger) forming fungi, while the turbine mixing system was more effective for F. moniliforme growing in the form of small clumps and freely dispersed hyphae. Flow characteristics under different mixing conditions were analyzed in a model fermenter. The kinetic energy of flow fluctuations was measured in gassed and ungassed water and different fermentation broth systems by using a Stirring Intensity Measuring Device (SIMD-F1). The difference of the energy values at different points was better expressed in the fermenter with a turbine mixing system in comparison with that having a counterflow mixing system. High viscous F. amygdali and A. niger broth provided higher energy values compared to water and low viscous F. moniliforme broth. It was observed that the intensity of growth and the intensity of the synthesis decreased at very high energy values, which was obviously connected to the influence of the irreversible shear stress on the mycelial morphology.  相似文献   

17.
Infection of cereal grains with Fusarium species can cause contamination with mycotoxins that affect human and animal health. To determine the potential for mycotoxin contamination, we isolated Fusarium species from samples of rice seeds that were collected in 1997 on farms in the foothills of the Nepal Himalaya. The predominant Fusarium species in surface-disinfested seeds with husks were species of the Gibberella fujikuroi complex, including G. fujikuroi mating population A (anamorph, Fusarium verticillioides), G. fujikuroi mating population C (anamorph, Fusarium fujikuroi), and G. fujikuroi mating population D (anamorph, Fusarium proliferatum). The widespread occurrence of mating population D suggests that its role in the complex symptoms of bakanae disease of rice may be significant. Other common species were Gibberella zeae (anamorph, Fusarium graminearum) and Fusarium semitectum, with Fusarium acuminatum, Fusarium anguioides, Fusarium avenaceum, Fusarium chlamydosporum, Fusarium equiseti, and Fusarium oxysporum occasionally present. Strains of mating population C produced beauvericin, moniliformin, and gibberellic acid, but little or no fumonisin, whereas strains of mating population D produced beauvericin, fumonisin, and, usually, moniliformin, but no gibberellic acid. Some strains of G. zeae produced the 8-ketotrichothecene nivalenol, whereas others produced deoxynivalenol. Despite the occurrence of fumonisin-producing strains of mating population D, and of 8-ketotrichothecene-producing strains of G. zeae, Nepalese rice showed no detectable contamination with these mycotoxins. Effective traditional practices for grain drying and storage may prevent contamination of Nepalese rice with Fusarium mycotoxins.  相似文献   

18.
Xylanase inhibitor TAXI-I gene was cloned from wheat (Triticum aestivum L.) and then TAXI-I encoding sequence was expressed in Escherichia coli. The recombinant TAXI-I protein inhibited glycoside hydrolase (GH) family 11 xylanases in Aspergillus niger (Anx; a fungal xylanase), and Thermomonospora fusca (Tfx; a bacterial xylanase), and also inhibited hybrid xylanases Atx (a hybrid xylanase whose parents are T. fusca and A. niger) and Btx (a hybrid xylanase whose parents are T. fusca and Bacillus subtilis). Among the tested xylanases, A. niger xylanase was the most inhibited one by wheat xylanase inhibitor TAXI-I, while T. fusca xylanase was the least inhibited one. The profile of TAXI-I gene expression in wheat in response to phytohormones was also investigated. TAXI-I gene expression was drastically induced by methyl jasmonate (MeJa), and hardly detected in gibberellic acid (GA) treatment. Therefore, TAXI-I might be involved in plant defense against fungal and bacteria xylanases.  相似文献   

19.
In Gibberella fujikuroi, strain GF-1a, the effect of the sodium salt of compactin on the incorporation of both radiolabelled acetate and mevalonate into gibberellic acid has been investigated. In each case, a concentration of 40 mg/1. caused a significant reduction in the incorporation.  相似文献   

20.
On the safety of Aspergillus niger--a review   总被引:6,自引:0,他引:6  
Aspergillus niger is one of the most important microorganisms used in biotechnology. It has been in use already for many decades to produce extracellular (food) enzymes and citric acid. In fact, citric acid and many A. niger enzymes are considered GRAS by the United States Food and Drug Administration. In addition, A. niger is used for biotransformations and waste treatment. In the last two decades, A. niger has been developed as an important transformation host to over-express food enzymes. Being pre-dated by older names, the name A. niger has been conserved for economical and information retrieval reasons and there is a taxonomical consensus based on molecular data that the only other common species closely related to A. niger in the Aspergillus series Nigri is A. tubingensis. A. niger, like other filamentous fungi, should be treated carefully to avoid the formation of spore dust. However, compared with other filamentous fungi, it does not stand out as a particular problem concerning allergy or mycopathology. A few medical cases, e.g. lung infections, have been reported, but always in severely immunocompromised patients. In tropical areas, ear infections (otomycosis) do occur due to A. niger invasion of the outer ear canal but this may be caused by mechanical damage of the skin barrier. A. niger strains produce a series of secondary metabolites, but it is only ochratoxin A that can be regarded as a mycotoxin in the strict sense of the word. Only 3–10% of the strains examined for ochratoxin A production have tested positive under favourable conditions. New and unknown isolates should be checked for ochratoxin A production before they are developed as production organisms. It is concluded, with these restrictions, that A. niger is a safe production organism. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号