首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4-Methyl catechol and catechol, at concentrations ranging from 0.03 to 9 mM and 0.066 to 20 mM, respectively, have a synergistic effect on the rate of DL-DOPA oxidation by mushroom tyrosinase to material absorbing at 475 nm. The synergism results from the ability of 4-methyl catechol-o-quinone (4-methyl-o-benzoquinone) and of catechol-o-quinone (o-benzoquinone) to oxidize DL-DOPA non-enzymatically to dopaquinone, with the latter being immediately converted to dopachrome (λmax = 475 nm).  相似文献   

2.
Dihydroxybenzoic acids (DBA), such as 3,4-DBA, 3,5-DBA, and 2,4-DBA--at all concentrations tested--inhibited the rate of DL-DOPA oxidation to dopachrome (lambda max = 475 nm) by mushroom tyro0sinase. 2,3-DBA and 2,5-DBA at relatively low concentration had a synergistic effect on the reaction, whereas at relatively high concentrations they inhibited the rate of DL-DOPA oxidation. The synergistic effect of 0.6-13.3 mM 2,3-DBA on the rate of DL-DOPA oxidation to dopachrome (lambda max = 475 nm) was found to be due to the ability of 2,3-DBA-o-quinone (formed by the oxidation of 2,3-DBA by mushroom tyrosinase or by sodium periodate) to oxidize DL-DOPA to dopachrome (via dopaquinone) non-enzymatically. A similar explanation is likely to be valid for the synergism exerted by 2,5-DBA on the rate of DL-DOPA oxidation by mushroom tyrosinase.  相似文献   

3.
Dihydroxybenzoic acids (DBA), such as 3,4-DRA, 3,5-DBA, and 2,4-DBA—at all concentrations tested—inhibited the rate of DL-DOPA oxidation to dopachrome (λmax = 475 nm) by mushroom tyrosinase. 2,3-DBA and 2,5-DBA at relatively low concentration had a synergistic effect on the reaction, whereas at relatively high concentrations they inhibited the rate of DL-DOPA oxidation. The synergistic effect of 0.6-13.3 mM 2,3-DRA on the rate of DL-DOPA oxidation to dopachrome (λmax = 475 nm) was found to be due to the ability of 2,3-DBA-o-quinone (formed by the oxidation of 2,3-DBA by mushroom tyrosinase or by sodium periodate) to oxidize DL-DOPA to dopachrome (via dopaquinone) non-enzymatically. A similar explanation is likely to be valid for the synergism exerted by 2,5-DBA on the rate of DL-DOPA oxidation by mushroom tyrosinase.  相似文献   

4.
Colorimetric determination of catechol siderophores in microbial cultures   总被引:9,自引:0,他引:9  
A highly sensitive spectrophotometric method for the selective detection of catechol compounds such as catechol siderophores (e.g., enterobactin) is described. The basis of the method involves the ability of the vicinal aromatic hydroxyl groups under acidic conditions to bring about a reduction of Fe3+ (from ferric ammonium citrate) to Fe2+. Detection of Fe2+ in the presence of Fe3+ is made with 1,10-phenanthroline under previously established conditions. The assay mixture is heated at 60 degrees C for 1 h to accelerate the development of color which is subsequently measured at 510 nm. The Beer-Lambert law is obeyed over the range of 0.16 to 60 microM 2,3-dihydroxybenzoic acid. Compared to the Arnow nitration method, the assay is more responsive, is approximately seven times more sensitive, and is effective with catechols substituted at positions 3 and 4. The method gives positive results with catechols such as DL-DOPA, L-dopamine, (+/-)-epinephrine, and DL-norepinephrine. Very rapid color development is obtained with ascorbic acid and p-diols, while m-diols are poorly detected. Low degrees of reactivity are shown by hydroxylamino and hydroxamate compounds. Phenolic, sulfydryl, indolyl, and quinonyl derivatives do not interfere with the reaction. The method has been adapted to determine catechol compounds in the culture medium of bacterial cells grown at different iron concentrations.  相似文献   

5.
Histamine release from rat pleural and peritoneal mast cells induced by catechol (1, 10, 50, 250 microM and 1 mM) has been studied. The dose-response induced by catechol is non-cytotoxic, is not modified by purification of mast cells and is calcium independent. The sensitivity and maximum response to catechol is the same irrespective of the presence or absence of Ca++, except on purified pleural mast cells, that showed a plateau response at 250 microM catechol in the absence of Ca++, and on unpurified peritoneal mast cells which exhibited a lower maximum response equally in the absence of Ca++. The release is induced by catechol at concentrations as low as 50 microM in all cases, and the maximum response is reached at 1 mM.  相似文献   

6.
For enhancement ofcis,cis-muconate productivity from benzoate, catechol 1,2-dioxygenase (C12O) which catalyzes the rate-limiting step (catechol conversion tocis,cis-muconate) was cloned and expressed in recombinantPseudomonas putida BCM114. At higher benzoate concentrations (more than 15 mM),cis,cis-muconate productivity gradually decreased and unconverted catechol was accumulated up to 10 mM in the case of wildtypeP. putida BM014, whereascis,cis-muconate productivity continuously increased and catechol was completely transformed tocis,cis-muconate forP. putida BCM114. Specific C12O activity ofP. putida BCM114 was about three times higher than that ofP. putida BM014, and productivity was enhanced more than two times.  相似文献   

7.
The hydroxylating activity of mushroom tyrosinase has been utilized for over a decade in the preparation of 2-hydroxyestradiol from estradiol, yet this same enzyme is known to function as an oxidant of o-dihydric compounds to the corresponding o-quinones. It was questioned why catechol estrogens do not react further, particularly since the tyrosinase activity (hydroxylating) is exceeded many fold by the diphenol oxidase activity of the enzyme. This report describes that the catechol estrogen will react in presence of enzyme but only if catechol is also present. Diphenol oxidase activity was measured either by the polarographic oxygen-utilization technique or by changes in the absorption spectrum at 206 and 256 nm. The enzyme activity was standardized with catechol (Km = 5.2 X 10(-4) M). The steroid did not react with the enzyme if catechol was absent. With catechol, the steroid reacted rapidly and completely (Km = 4.2 X 10(-4) M). The consumption of oxygen with catechol and 2-hydroxyestradiol was additive and stoichiometric, 1 g-atom oxygen/mol of either substrate. Kinetic analysis shows that catechol functions as an activator of the tyrosinase.  相似文献   

8.
The oxidation of catechol in neutral and slightly alkaline aqueous solutions (pH 7-9.6) by excess hydrogen peroxide (0.002-0.09 mol/L) in the presence of Co(II) (2.10(-7)-2.10(-5) mol/L) is accompanied by abrupt formation of red purple colouration, which is subsequently decolourized within 1 h. The electron spectra of the reaction mixture are characterized by a broad band covering the whole visible range (400-700 nm), with maximum at 485 nm. The reaction is initiated by catechol oxidation to its semiquinone radical and further to 1,2-benzoquinone. By nucleophilic addition of hydrogen peroxide into the p-position of benzoquinone C=O groups, hydroperoxide intermediates are formed, which decompose to hydroxylated 1,4-benzoquinones. It was confirmed by MS spectroscopy that monohydroxy-, dihydroxy- and tetrahydroxy-1,4-benzoquinone are formed as intermediate products. As final products of catechol decomposition, muconic acid, its hydroxy- and dihydroxy-derivatives and crotonic acid were identified. In the micellar environment of hexadecyltrimethylammonium bromide the decomposition rate of catechol is three times faster, due to micellar catalysis, and is accompanied by chemiluminescence (CL) emission, with maxima at 500 and 640 nm and a quantum yield of 1 x 10(-4). The CL of catechol can be further sensitized by a factor of 8 (maximum) with the aid of intramicellar energy transfer to fluorescein.  相似文献   

9.
Chloride ion (Cl-) effects on chloroperoxidase (CPO)-catalyzed peroxidation of catechol were used to probe the involvement of Cl- in CPO reactions. High concentrations of Cl- inhibit catechol peroxidation by competing with hydrogen peroxide (KI = 370 mM). However, at lower concentrations, Cl- is a linear competitive activator versus catechol (KDC = 35 mM). Addition of good halogenation substrates to the peroxidatic reaction mixture converts Cl- from a competitive activator to a competitive inhibitor. The KI (10 mM) for this halogenation substrate promoted Cl- inhibition is equivalent to the KM (11 mM) for Cl- in CPO-catalyzed halogenation reactions. During this inhibition, the halogenation substrate is consumed and, at the point where its consumption is complete, Cl- again becomes an activator. Also, at 2.0 mM hydrogen peroxide, CPOs chlorination reaction and its Cl- -activated peroxidatic reaction have similar apparent kcat values. All data are consistent with a mechanism in which Cl- competes with catechol for binding to CPO Compound I. Catechol binding initiates the Cl- -independent path, in which Compound I acts as the oxidizing agent for catechol. When Cl- binds to Compound I, it reacts to yield the enzymatic chlorinating intermediate which is responsible for either the oxidation of catechol in the Cl- -dependent path or the chlorination of substrates in the halogenation pathway. Cl- activation of the peroxidatic reaction is due to a shift from the Cl- -independent pathway to the Cl- -dependent process. The mechanism is unique in that exclusion of the substrate from its primary binding site leads to an increase in the catalytic efficiency of the reaction. This catechol-Cl- system also offers further potential for probing the specificity and chemistry of the key enzymatic intermediates in haloperoxidase-catalyzed reactions.  相似文献   

10.
The reactions of 3-ethylcatechol and 3-(methylthio)catechol with catechol 1,2-dioxygenase and catechol 2,3-dioxygenase from Pseudomonas putida were examined. Both 3-substituted catechols are oxidized by catechol 2,3-dioxygenase at approximately 30% of the rate observed for catechol oxidation by this enzyme. Analysis of the products of the reactions showed that ring cleavage occurs in a normal fashion between carbons 2 and 3 of the alternate substrates. 3-Ethylcatechol is oxidized by catechol 1,2-dioxygenase at about 6% of the rate of catechol oxidation; ring cleavage occurs between carbons 1 and 2 to give 2-ethyl-cis,cis-muconic acid. However, 3-(methylthio)catechol is a very poor substrate for catechol 1,2-dioxygenase (0.8% of the rate of catechol), but it is a potent competitive inhibitor (Ki = 0.6 microM). The effects of 3-(methylthio)catechol and 3-ethylcatechol on the visible and EPR spectra of catechol 1,2-dioxygenase are also reported.  相似文献   

11.
Aromatic hydroxylations are important bacterial metabolic processes but are difficult to perform using traditional chemical synthesis, so to use a biological catalyst to convert the priority pollutant benzene into industrially relevant intermediates, benzene oxidation was investigated. It was discovered that toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1, toluene 3-monooxygenase (T3MO) of Ralstonia pickettii PKO1, and toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 convert benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by successive hydroxylations. At a concentration of 165 microM and under the control of a constitutive lac promoter, Escherichia coli TG1/pBS(Kan)T4MO expressing T4MO formed phenol from benzene at 19 +/- 1.6 nmol/min/mg of protein, catechol from phenol at 13.6 +/- 0.3 nmol/min/mg of protein, and 1,2,3-trihydroxybenzene from catechol at 2.5 +/- 0.5nmol/min/mg of protein. The catechol and 1,2,3-trihydroxybenzene products were identified by both high-pressure liquid chromatography and mass spectrometry. When analogous plasmid constructs were used, E. coli TG1/pBS(Kan)T3MO expressing T3MO formed phenol, catechol, and 1,2,3-trihydroxybenzene at rates of 3 +/- 1, 3.1 +/- 0.3, and 0.26 +/- 0.09 nmol/min/mg of protein, respectively, and E. coli TG1/pBS(Kan)TOM expressing TOM formed 1,2,3-trihydroxybenzene at a rate of 1.7 +/- 0.3 nmol/min/mg of protein (phenol and catechol formation rates were 0.89 +/- 0.07 and 1.5 +/- 0.3 nmol/min/mg of protein, respectively). Hence, the rates of synthesis of catechol by both T3MO and T4MO and the 1,2,3-trihydroxybenzene formation rate by TOM were found to be comparable to the rates of oxidation of the natural substrate toluene for these enzymes (10.0 +/- 0.8, 4.0 +/- 0.6, and 2.4 +/- 0.3 nmol/min/mg of protein for T4MO, T3MO, and TOM, respectively, at a toluene concentration of 165 microM).  相似文献   

12.
Elofsson  R.  Falck  B.  Lindvall  O.  Myhrberg  H. 《Cell and tissue research》1977,182(4):525-536
Summary In certain sensory neurons of many different invertebrate species, including the sea anemones. Metridium senile and Tealia felina and the crustacean Anemia salina, fluorophores are formed during the course of the fluorescent histochemical technique of Falck-Hillarp. The presumed catecholamine nature of the neuronal fluorogenic compound was investigated by microspectrofluorometry, and the spectral characteristics of the fluorescence in the taxonomically different species was found to be very similar (excitation maximum at 375 nm with a smaller peak or shoulder at 330 nm and sometimes a shoulder in the spectrum at 410 nm; emission maximum at 475 nm). The emission maximum coincides with that of the catecholamines and DOPA (475 nm). The excitation maximum (375 nm) directly after formaldehyde treatment, however, differs from that of the catecholamines and DOPA (410 nm), but is similar to the excitation maximum displayed by these catechol derivatives at acid pH. The spectral characteristics of the fluorophore in the sensory cells might therefore theoretically be explained by an acid pH in the cells. This seems improbable, however, and it is suggested that the phenomenon is due to the presence of unknown catechol derivatives. Analyses of the pH-dependent spectral changes indicate that the presumed catechol derivative in Tealia felina is -hydroxylated, whereas that in Anemia salina is not.  相似文献   

13.
Circular dichroism (CD) spectra of catechol 1,2-dioxygenase from Acinetobacter calcoaceticus exhibit three positive ellipticity bands between 240 and 300 nm (250, 283, and 292 nm), two negative bands at 327 and 480 nm, and a low-intensity positive band at 390 nm. The fractions of helix β-form, and unordered form of the enzyme are 8, 38, and 54%, respectively. The circular dichroic bands at 327 and 480 nm and a part of the positive bands at 292 and 390 nm are associated with enzyme activity. Significant changes in absorption and CD spectra of the enzyme were observed when the temperature of the enzyme preparation was increased to 47°C, coinciding with the sharp decrease in enzyme activity observed at this temperature.  相似文献   

14.
Partially purified preparations of catechol 2,3-dioxygenase from toluene-grown cells of Pseudomonas putida catalyzed the stoichiometric oxidation of 3-methylcatechol to 2-hydroxy-6-oxohepta-2,4-dienoate. Other substrates oxidized by the enzyme preparation were catechol, 4-methylcatechol, and 4-fluorocatechol. The apparent Michaelis constants for 3-methylcatechol and catechol were 10.6 and 22.0 muM, respectively. Substitution at the 4-position decreases the affinity and activity of the enzyme for the substrate. Catechol 2,3-dioxygenase preparations did not oxidize 3-chlorocatechol. In addition, incubation of the enzyme with 3-chlorocatechol led to inactivation of the enzyme. Kinetic analyses revealed that both 3-chlorocatechol and 4-chlorocatechol were noncompetitive or mixed-type inhibitors of the enzyme. 3-Chlorocatechol (Ki = 0.14 muM) was a more potent inhibitor than 4-chlorocatechol (Ki = 50 muM). The effect of the ion-chelating agents Tiron and o-phenanthrolene were compared with that of 3-chlorocatechol on the inactivation of the enzyme. Each inhibitor appeared to remove iron from the enzyme, since inactive enzyme preparations could be fully reactivated by treatment with ferrous iron and a reducing agent.  相似文献   

15.
The soluble form of rat germ cell adenylate cyclase was inhibited by compounds with a catechol moiety. Among the naturally occurring catechols tested, catechol estrogens were the most potent inhibitors. Catechol estrogens at 2-6 microM inhibited enzyme activity by 50% and almost completely at 30-100 microM concentration. The inhibitory activity of catechol estrogens depends on the catechol moiety of the molecule. Catechol per se also inhibited the activity of this enzyme, 50% inhibition being achieved at about 11 microM. The two hydroxyls of the catechol moiety are essential for the inhibitory interaction with the enzyme. Thus, aromatic compounds containing only one hydroxyl group in the benzene ring, such as tyrosine, phenylephrine, estradiol, and 6 alpha-hydroxyestradiol were either completely inactive or had marginal inhibitory activity at concentrations up to 0.3-1 mM. Moreover, methylation of the hydroxyl groups of the catechol moiety of the catechol estrogens as in 2-methoxyestradiol 3-methyl ether rendered the catechol estrogens inactive. The inhibitory potency of these compounds varied greatly depending on the structure associated with the catechol ring. Thus, compounds in which catechol is associated with an aliphatic side chain, such as dopamine, L-dopa, norepinephrine, and isoproterenol, were about 11- to 34-fold less potent than catechol. On the other hand, compounds in which catechol is associated either with a hydroaromatic ring system, as in apomorphine, or with an alicyclic ring system, as in catechol estrogens, were about 2- to 5-fold more potent than catechol. The inhibitory effect of dopamine, apomorphine, and catechol estrogens was not affected by specific D-1 or D-2 antagonist, indicating that they do not act via receptors for dopamine.  相似文献   

16.
Three catechol 2,3-dioxygenases for biphenyl, naphthalene/salicylate, and toluene/xylene oxidation were cloned from Achromobacter xylosoxidans KF701, Pseudomonas putida (NAH7), and Pseudomonas sp. (pWWO). The cloned catechol 2,3-dioxygenases were identified by enzymatic activity assay in addition to yellow bands on polyacrylamide gel after electrophoresis and activity staining. All of the cloned catechol 2,3-dioxygenases exhibited their highest activities on catechol as a substrate compared with catechol derivatives including 4-chlorocatechol, 3-methylcatechol, and 4-methylcatechol. The cloned catechol 2,3-dioxygenases are not fused proteins but were significantly different from one another in their electrophoretic mobilities on nondenaturing 7.5%-polyacrylamide gel.  相似文献   

17.
This study aimed at characterization of catechol 2,3-dioxygenase from Stenotrophomonas maltophilia KB2, being able to utilize a wide spectrum of aromatic substrates as a sole carbon and energy source. 2-methylphenol, 3-methylphenol, and 4-methylphenol was completely degraded during 24 h in concentration 6 mM, 7 mM, and 5 mM, respectively. When cells of strain KB2 were growing on methylphenols, catechol 2,3-dioxygenase was induced. Biochemical analysis revealed that the examined enzyme was similar to another catechol 2,3-dioxygenases, but showed extremely high activity. The enzyme was optimally active at 30 °C and pH 7.6. Kinetic studies showed that the value of Km, Vmax and Hill constant was 85.11 ??M, 3.08 ??M min−1 and 4.09 respectively. Comparative structural and phylogenetic analysis of catechol 2,3-dioxygenase from S. maltophilia KB2 had placed the protein with the single-ring substrate subfamily of the extradiol dioxygenase. We observed the presence of externally located ??-helices and internally located ??-sheets. We also suggest that the Fe2+ ion binding is facilitated via four ligands: two histidine residues, one glutamate residue and one molecule of water.  相似文献   

18.
Catechol oxidases (EC 1.10.3.1) catalyse the oxidation of o-diphenols to their corresponding o-quinones. These oxidases contain two copper ions (CuA and CuB) within the so-called coupled type 3 copper site as found in tyrosinases (EC 1.14.18.1) and haemocyanins. The crystal structures of a limited number of bacterial and fungal tyrosinases and plant catechol oxidases have been solved. In this study, we present the first crystal structure of a fungal catechol oxidase from Aspergillus oryzae (AoCO4) at 2.5-Å resolution. AoCO4 belongs to the newly discovered family of short-tyrosinases, which are distinct from other tyrosinases and catechol oxidases because of their lack of the conserved C-terminal domain and differences in the histidine pattern for CuA. The sequence identity of AoCO4 with other structurally known enzymes is low (less than 30 %), and the crystal structure of AoCO4 diverges from that of enzymes belonging to the conventional tyrosinase family in several ways, particularly around the central α-helical core region. A diatomic oxygen moiety was identified as a bridging molecule between the two copper ions CuA and CuB separated by a distance of 4.2–4.3 Å. The UV/vis absorption spectrum of AoCO4 exhibits a distinct maximum of absorbance at 350 nm, which has been reported to be typical of the oxy form of type 3 copper enzymes.  相似文献   

19.
Ralstonia sp. Ba-0323, a wild strain isolated from soil, produced catechol from benzoate and accumulated it outside the cells. The bacterium produced a maximal amount of catechol (1.6 mg/ml) from 3 mg/ml of sodium benzoate in a 20-h growing culture. The conversion rate of benzoate to catechol was 70% on a molar basis. The catechol production by the resting cells increased in the presence of glycerol, and the maximal amount of catechol produced from 3 mg/ml of sodium benzoate reached 1.9 mg/ml at the conversion rate of 83% after 8 h of incubation. Catechol 1,2-dioxygenase, which catalyzed the ring cleavage of catechol, was purified to homogeneity from a cell extract of Ralstonia sp. Ba-0323 growing on benzoate and characterized. The specific activity of the purified enzyme was much lower than those of the dioxygenases from other microorganisms reported. The Km for catechol of the purified enzyme was much higher than those of other dioxygenases. In addition, the NH2-terminal amino acid sequence of the enzyme was less similar to the other catechol 1,2-dioxygenases than they are to each other.  相似文献   

20.
Incubation of 2 mg amounts of catechol in 5 ml samples of heparinated blood plasma from four subjects at 38 degrees C for 24 h produced plasma-soluble rheomelanins. These solutions had the brown color and the yellow-green fluorescence in ultraviolet light of 366 nm of other rheomelanins. Their differential ultraviolet and visible spectra showed a rheomelanin absorption maximum at 344 nm. Paper chromatograms of the rheomelanin-plasma solutions in 5% methanol-95% water showed elongated spots of rheomelanins with RF values of 0.82, on Whatman No. 1 paper. Using heparinated distilled water adjusted to pH 7.4 with sodium bicarbonate instead of human blood plasma gave markedly different findings from those obtained with the plasma rheomelanin solutions. Incubation of 4 mg amounts of catechol in 10 ml samples of heparinated whole blood from four subjects for 24, 32 and 48 at 38 degrees C produced rheomelanins as found in the plasma separated from the blood after incubation. The differential ultraviolet and visible spectra of these solutions revealed hemolysis caused by the catechol rheomelanins; this was more marked with longer incubations. The hemolysis was manifested by two absorption peaks at about 270 and 400 nm. Paper chromatography revealed the brown elongated spots of catechol rheomelanins with an RF value of 0.82. Other spots owing to the products of hemolysis were also present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号