首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
云南松林次生演替阶段土壤细菌群落的变化   总被引:1,自引:0,他引:1  
土壤细菌多样性是维持森林生态系统功能的关键因子,森林演替是影响其动态变化的重要因素.研究云南松林不同演替阶段土壤细菌群落结构及其多样性的变化规律,有助于深入理解森林生态系统恢复过程的驱动机制.本研究以云南省永仁县皆伐后形成的针叶林、针阔混交林和常绿阔叶林为对象,基于Illumina Hiseq高通量测序技术,分析森林演...  相似文献   

2.
Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land‐cover change affects belowground carbon storage and nutrient availability. We measured intra‐ and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well‐replicated, long‐term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter‐ and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land‐use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities.  相似文献   

3.
森林次生演替和土壤层次对微生物群落结构的影响   总被引:2,自引:0,他引:2  
森林次生演替与生态系统结构和功能的动态变化密切相关。大多数研究主要关注植物群落以及土壤有机碳(SOC)的变化,然而土壤微生物群落如何响应森林次生演替还需要进一步探究。本研究以长白山森林次生演替序列(20、80、120、200和≥300年)和两个土壤层次为对象,采用磷脂脂肪酸微生物标志物,探究温带森林次生演替过程中地下微生物群落结构变化。森林次生演替改变了土壤微生物群落结构,主要归因于某些特定微生物类群的变化,演替前期革兰氏阴性菌和腐生真菌占主导,而在演替后期革兰氏阳性菌和丛枝菌根真菌占主导。另外,土壤有机质数量和质量差异是影响微生物群落结构和生物量的主要环境因素。森林演替前期和中期增加的SOC含量促进了微生物生物量,而演替后期增加的难分解芳香族有机组分抑制了微生物生物量合成。土壤层次间理化性质的差异导致微生物群落变化,有机质层高的SOC以及氮含量导致更多微生物生物量的合成。微生物群落在时间和空间尺度的变化及其驱动因素反映了生态系统结构和功能对环境变化的响应。  相似文献   

4.
Environmental characteristics have a major effect on the species composition of seasonally dry tropical forest. However, this effect has been little considered when describing secondary succession of this ecosystem. We tested the hypothesis that local environmental heterogeneity influences successional trajectories when high species richness is available. Changes in species composition and structure were described in 126 vegetation plots differing in successional stage and located along a topographical and soil nutrient gradient. Variation in community composition was partitioned between successional stage, environmental characteristics, and spatial structure using redundancy analyses. In addition, relationships between plot distance matrices for these factors were analysed by means of Mantel tests. High species turnover was observed during succession and species composition similarity was higher among late successional forest than among early and intermediate forests. A higher portion of variation in species composition was explained by environmental characteristics compared to successional stage, whereas the spatial structure of the data was weak. Our results suggest that in the region of study, variation in the successional trajectories is occurring owing to environmental heterogeneity, as well as to human disturbance and other unmeasured processes.  相似文献   

5.
We test the hypothesis that secondary succession in Tropical Montane Cloud Forest (TMCF) in Mexico is accompanied by an increase in the spatial structuring of litter resources, soil nutrient concentrations and the soil macroinvertebrate community at a within-plot scale (5–25 m). This increased spatial structuring is expected because secondary succession in these forests is associated with an increase in the diversity of trees that dominate the canopy. If each tree species generates a particular soil environment under its canopy, then under a diverse tree community, soil properties will be spatially very heterogeneous. Tree censuses and grid sampling were performed in four successional stages of a secondary chronosequence of TMCF. Variography was used to analyse spatial patterns in continuous variables such as nutrient concentrations, while Spatial Analysis by Distance Indices (SADIE) was applied to determine patchiness in the distribution of soil macroinvertebrate taxa. Secondary succession was found to be accompanied by the predicted increase in the spatial structuring of litter resources and the macroinvertebrate community at the within-plot scale. Spatial patterns in the macroinvertebrate community only became evident for all taxa in the oldest forest (100 years old). Patches with low Ca and Mg concentrations in early successional soils were associated with patches where pine litter was most abundant while those with low P concentrations in late successional stages were associated with patches where oak litter was most abundant. Results suggest that anthropogenic disturbance aboveground promotes a more homogeneous resource environment in the surface soil, which compared to older forests, sustains a less diverse and less spatially structured macroinvertebrate community.  相似文献   

6.
The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.  相似文献   

7.
Dynamics of vesicular-arbuscular mycorrhizae during old field succession   总被引:8,自引:0,他引:8  
Summary The species composition of vesicular-arbuscular mycorrhizal (VAM) fungal communities changed during secondary succession of abandoned fields based on a field to forest chronosequence. Twenty-five VAM fungal species were identified. Seven species were clearly early successional and five species were clearly late successional. The total number of VAM fungal species did not increase with successional time, but diversity as measured by the Shannon-Wiener index tended to increase, primarily because the community became more even as a single species, Glomus aggregatum, became less dominant in the older sites. Diversity of the VAM fungal community was positively correlated with soil C and N. The density of VAM fungi, as measured by infectivity and total spore count, first increased with time since abandonment and then decreased in the late successional forest sites. Within 12 abandoned fields, VAM fungal density increased with increasing soil pH, H2O soluble soil C, and root biomass, but was inversely related to extractable soil P and percent cover of non-host plant species. The lower abundance of VAM fungi in the forest sites compared with the field sites agrees with the findings of other workers and corresponds with a shift in the dominant vegetation from herbaceous VAM hosts to woody ectomycorrhizal hosts.  相似文献   

8.
Drone-based remote sensing is a promising new technology that combines the benefits of ground-based and satellite-derived forest monitoring by collecting fine-scale data over relatively large areas in a cost-effective manner. Here, we explore the potential of the GatorEye drone-lidar system to monitor tropical forest succession by canopy structural attributes including canopy height, spatial heterogeneity, gap fraction, leaf area density (LAD) vertical distribution, canopy Shannon index (an index of LAD), leaf area index (LAI), and understory LAI. We focus on these variables’ relationship to aboveground biomass (AGB) stocks and species diversity. In the Caribbean lowlands of northeastern Costa Rica, we analyze nine tropical forests stands (seven second-growth and two old-growth). Stands were relatively homogenous in terms of canopy height and spatial heterogeneity, but not in their gap fraction. Neither species density nor tree community Shannon diversity index was significantly correlated with the canopy Shannon index. Canopy height, LAI, and AGB did not show a clear pattern as a function of forest age. However, gap fraction and spatial heterogeneity increased with forest age, whereas understory LAI decreased with forest age. Canopy height was strongly correlated with AGB. The heterogeneous mosaic created by successional forest patches across human-managed tropical landscapes can now be better characterized. Drone-lidar systems offer the opportunity to improve assessment of forest recovery and develop general mechanistic carbon sequestration models that can be rapidly deployed to specific sites, an essential step for monitoring progress within the UN Decade on Ecosystem Restoration.  相似文献   

9.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   

10.
Abstract. Many theories of forest succession imply that terrestrial plant community composition within a region tends to converge toward a climax community. That is, given similar climatic and edaphic conditions, succession at different sites within an area will lead to comparable species compositions, a pattern referred to as successional convergence. In this study, we examine changes in plant composition within forest canopy gaps over a 17-yr period to identify potential patterns of successional convergence and to ascertain the factors controlling the successional pathway. To do so, we: (1) sampled 36 forest canopy gaps in Hueston Woods Nature Preserve in 1977, 1981, 1985, 1989 and 1993, (2) evaluated changes in the similarity of gap composition over this period, and (3) examined gap composition in each year as a function of variables describing gap habitat, seed source proximity, and disturbance history. Results indicated an initial pattern of successional divergence, with gaps exhibiting increased dissimilarity over the first 10–12 years of succession. We attribute this initial period of divergence to the effects of differential seed inputs from edge individuals and heterogeneity of available light due to differences in gap size. Recent surveys, however, indicated that gap composition has become more similar as competition within gaps has become more intense. In these samples, gap composition is closely linked to site conditions, including slope, soil conditions, and site exposure. Finally, while these patterns may suggest equilibrium-oriented dynamics, non-equilibrium processes such as repeat disturbances are also evident at Hueston Woods and will likely play an important role in determining future successional pathways.  相似文献   

11.
长白山针阔混交林不同演替阶段的昆虫多样性   总被引:6,自引:0,他引:6  
贾玉珍  赵秀海  孟庆繁 《昆虫学报》2009,52(11):1236-1243
昆虫多样性变化对生态系统健康有重要的指示作用, 为研究昆虫群落变化与生境演替之间的关系, 本研究采用网捕、灯诱和诱捕法系统调查了长白山针阔混交林不同演替阶段(次生白桦林、次生针阔混交林、原始阔叶红松林)昆虫群落的组成和多样性, 分析了昆虫在森林演替过程中的规律及与植被群落之间的关系。系统调查共采集昆虫标本8 183头, 隶属于14个目699种, 其中鳞翅目和鞘翅目是主要优势类群。次生针阔混交林昆虫的个体数量最多, 原始阔叶红松林中物种数最多。不同演替阶段昆虫群落的物种数和个体数差异不显著, 但次生针阔混交林、原始阔叶红松林的Fisher’s α指数显著高于次生白桦林。目水平上的昆虫多样性未表现出显著性差异. 昆虫多样性在森林演替过程中和草本植物多样性的变化趋势相同;由于食性和生境选择的不同, 森林演替过程中鳞翅目昆虫多样性逐渐升高, 而鞘翅目多样性逐渐降低。  相似文献   

12.
为探明不同演替阶段土壤碳吸存潜力,选取演替时间为15a(演替初期)、47a(演替中期)、110a(演替后期)3个中亚热带常绿阔叶林,分析了各演替阶段的土壤有机碳(SOC)含量以及土壤微生物量碳(MBC)、可溶性碳(DOC)和微生物熵(SMQ)的季节变化。结果表明:演替中、后期不同土层的土壤SOC、MBC、DOC含量和SMQ均显著高于演替初期(P<0.05);与演替中期相比,演替后期土壤MBC、DOC含量有所降低,SOC含量和SMQ无显著差异。土壤SOC、MBC和DOC含量随土层加深而显著性降低(演替初、中期DOC除外),并随演替进行逐渐向腐殖质层富集。不同演替阶段MBC、DOC和SMQ均有显著季节变化,最低值出现在秋季,最高值随演替进程由冬季逐步转向夏季。相关分析表明,不同演替阶段土壤活性有机碳含量与土壤有机碳含量极显著相关(P<0.01),且土壤活性有机碳(MBC、DOC)和SMQ对土壤碳库变化更为敏感。  相似文献   

13.
为探明热带森林蚂蚁巢穴的分布特征及其影响因素, 采用样方法研究了西双版纳不同演替阶段热带森林定居巢穴蚂蚁的种类及其巢穴的密度、盖度和空间分布特征, 并分析了土壤理化环境与蚂蚁种类总数、巢穴密度及盖度的相关性。结果表明, 不同演替阶段热带森林蚂蚁种类总数、巢穴的密度及盖度大小顺序为: 小果野芭蕉 (Musa acuminata)群落>白背桐(Mallotus paniculatus)群落>思茅崖豆(Mellettia leptobotrya)群落, 并且热带森林的演替类型显著影响蚂蚁种类总数及巢穴密度, 而对巢穴盖度的影响未达到显著水平; 蚂蚁种类总数、巢穴密度与土壤总有机碳和水解氮显著正相关, 与土壤容重和土壤含水率显著负相关, 但所选择的土壤理化指标与巢穴盖度的相关性均未达到显著水平; 蚂蚁巢穴的空间分布呈随机分布格局。我们的数据表明, 不同演替阶段热带森林所形成的植被类型及土壤环境状况共同影响定居的蚂蚁种类总数与筑巢密度。  相似文献   

14.
Lawson  Dan  Inouye  Richard S.  Huntly  Nancy  Carson  Walter P. 《Plant Ecology》1999,145(2):267-279
We surveyed vegetation along forest margins in a 65-year chronosequence of old-fields at the Cedar Creek Natural History Area in east-central Minnesota, USA, to identify successional patterns of woody plants and to determine if these were correlated with soil nitrogen. We predicted that shrub and tree abundance, size, and distance of occurrence from the forest edge would be correlated with field age or soil nitrogen. Instead we did not find successional trends in the abundance or composition of woody species. Even in the oldest field the abundance of trees and shrubs was low and concentrated in areas close to the forest. Though trees were larger and present further from the forest edges in older fields, average tree height was less than 126 cm in all fields.Since we did not find successional trends we looked at various local factors (local seed sources, deer browsing, and forest edge aspect) and their relation to recruitment, mortality, or growth to explain variation among fields in abundance of trees or shrubs. The three most common tree species (Quercus rubra, Q. macrocarpa,and Populus tremuloides) all had a higher relative abundance of seedlings, and two (Q. rubra and Q. macrocarpa) had a higher relative abundance of large trees adjacent to forests with a high abundance of conspecific adults. Most trees taller than 20 cm were browsed by deer and were shorter in 1995 than they were in 1993. Mortality was higher for trees less than 30 cm indicating that mortality was size-dependent. Forest edge aspect did not significantly influence the abundance or demography of any species. Our results suggest that the patterns of seedling recruitment were largely determined by the proximity of seed sources and that these patterns may persist so that tree communities in old-fields resemble adjacent forests. Deer may be a significant factor in the suppression of tree populations in old-fields through repeated browsing which reduces tree growth and elevates tree mortality by prolonging the period of time trees remain susceptible to size-dependent mortality.  相似文献   

15.
【目的】研究我国最大的林区之一——大兴安岭森林火烧后不同演替阶段土壤细菌多样性动态,为天然林保护工程对于生物多样性的影响增添新的认识。【方法】以空间替代时间的方法分析大兴安岭森林演替对于土壤细菌多样性动态的影响。大兴安岭森林火烧后典型的自然演替序列为火烧迹地(LG-BA)、灌丛(SHR)、白桦林(BP)、白桦落叶松混交林(BP-LG)、落叶松林(LG-OM)。在演替序列的每个典型样地上采集0-10 cm土样,采用Illumina Mi Seq高通量测序技术测定土壤细菌群落组成及其多样性。【结果】细菌操作分类单位(OTU)数量从少到多的顺序为火烧迹地落叶松白桦混交林灌丛落叶松林白桦林。随着森林演替,多样性指数Simpson先增高后降低;Shannon指数先增加后减少再增加;OTU的丰度变化比较平缓,表明物种变化较小。在各演替阶段中,土壤细菌种类主要有变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)和浮霉菌门(Planctomycetes),4个门的种类含量随演替顺序都呈现先增加后减少的趋势。主成分分析表明不同演替阶段土壤细菌群落存在一定的差异性。冗余分析表明有机质(SOM)、全氮(TN)、全磷(TP)和p H对于土壤细菌群落变化有影响。【结论】随着森林演替,大兴安岭地区土壤细菌种类和生物多样性会发生变化,其变化与土壤化学成分和p H有关。  相似文献   

16.
研究群落构建机制是群落生态学的一个重要目标, 群落动态过程中的构建规律对于了解群落演替机理有重要的作用。该文以海南岛刀耕火种干扰后自然恢复的10 hm 2热带低地雨林为研究对象, 通过比较不同恢复阶段的次生林(15年、30年和60年)和老龄林在幼苗、幼树和成年树群落的物种组成, 揭示次生演替过程中的群落构建规律。研究结果表明, 老龄林中不同径级群落的物种多样性及不同径级间的物种相似度显著高于各恢复阶段的次生林, 但优势种在群落中的比例低于各恢复阶段的次生林。随着自然恢复过程的进行, 次生林群落物种组成与老龄林的相似性也逐渐增大, 支持演替平衡理论。所有恢复阶段样地中幼苗的个体、物种丰富度和基于多度涵盖估计量(ACE)都低于幼树和成年树群落, 幼苗层物种组成与幼树、成年树也有较大差异, 说明新增到幼苗群落可能是一个难于预测的过程。研究结果说明了确定过程和随机过程共同决定了次生演替的群落构建。  相似文献   

17.
Floristic composition and soil characteristics (moisture, pH, nutrient contents) in abandoned upland rice paddies of different ages were analyzed to clarify the regenerative aspects of succession as a tool for habitat restoration. The study sites represented five seral stages: newly abandoned paddy fields; successional paddy fields abandoned for 3, 7, and 10 years; and a 50‐year‐old Alnus japonica forest. A vegetation sere was apparent in changes of dominant plant species in the order Alopecurus aequalis var. amurensis (annual grass), Aneilema keisak (annual forb), Juncus effusus var. decipiens (rush), Salix koriyanagi (willow), and Alnus japonica (alder) communities. These temporal stages resemble the spatial zonation of vegetation in local riparian floodplain ecosystems, indicating a hydrosere, with soil moisture decreasing over time. Age distributions and life forms of the dominant plant species support a “tolerance” model of secondary succession, in which the established species persist into later successional stages. Persistence of earlier colonizers led to a net cumulative increase in species richness and a more even distribution of species cover with increasing field age. Between 10 and 50 years, vegetation stabilizes as an alder community. Soil moisture content decreased steadily with paddy field age after an initial rise immediately after their abandonment, whereas pools of organic matter, N, P, K, Ca, and Mg, increased with field age. The pace and direction of recovery of native vegetation and natural soil properties in these abandoned rice paddies resembled classic old field succession, a form of secondary succession that often serves as a template for guiding restoration efforts. Active intervention, in particular dismantling artificial levees, could accelerate the recovery process, but natural habitat recovery generally appears sufficiently robust to achieve “passive” restoration of this rare community without intervention.  相似文献   

18.
On the African continent, the population is expected to expand fourfold in the next century, which will increasingly impact the global carbon cycle and biodiversity conservation. Therefore, it is of vital importance to understand how carbon stocks and community assembly recover after slash‐and‐burn events in tropical second growth forests. We inventoried a chronosequence of 15 1‐ha plots in lowland tropical forest of the central Congo Basin and evaluated changes in aboveground and soil organic carbon stocks and in tree species diversity, functional composition, and community‐weighted functional traits with succession. We aimed to track long‐term recovery trajectories of species and carbon stocks in secondary forests, comparing 5 to 200 + year old secondary forest with reference primary forest. Along the successional gradient, the functional composition followed a trajectory from resource acquisition to resource conservation, except for nitrogen‐related leaf traits. Despite a fast, initial recovery of species diversity and functional composition, there were still important structural and carbon stock differences between old growth secondary and pristine forest, which suggests that a full recovery of secondary forests might take much longer than currently shown. As such, the aboveground carbon stocks of 200 + year old forest were only 57% of those in the pristine reference forest, which suggests a slow recovery of aboveground carbon stocks, although more research is needed to confirm this observation. The results of this study highlight the need for more in‐depth studies on forest recovery in Central Africa, to gain insight into the processes that control biodiversity and carbon stock recovery.  相似文献   

19.
Investigations into different stages of secondary succession (from a wheat field to a beechwood on Threstone; Northern Germany) demonstrated the formation of a carbon rich top soil in later successional stages. Parallel to changes in plant species and soil formation, there were also changes in species composition and diversity of saprophagous macro-invertebrates (Lumbricidae, Diplopoda, Isopoda) and oribatid mites (Acari: Oribatida). Diversity of diplopod and isopod species increased after cessation of cultivation, but in a late successional stage (ca 50 y-old fallow, ash-dominated wood) species number of diplopods and isopods declined strongly. In comparison with the other soil invertebrate groups, species composition of earthworms among the sites was more similar. Accumulation of soil C was assumed to be related to wood formation and occurrence of woody debris and recalcitrant leaf litter of beech trees. Incorporation of recalcitrant litter materials by earthworm species living in the upper mineral soil presumably contributed significantly to accumulation of soil C. Accumulation of soil C was accompanied by the development of an oribatid mite community rich in species. In early successional stages oribatids predominantly colonized the litter layer, while most oribatid mites of the beechwood inhabited the upper mineral soil. Maximum diversity of oribatid mites in the beechwood is assumed to be related to instability of the mineral soil caused by earthworm activity. Changes in species composition and diversity are discussed considering succession theory. Even soil invertebrates of similar trophic groups appear to respond very differently to successional changes. It is concluded that conservation strategies to maintain high diversity of soil invertebrates are most likely to be successful if a wide range of habitats of different successional stages is included.  相似文献   

20.
Secondary forests are becoming increasingly widespread in the tropics, but our understanding of how secondary succession affects carbon (C) cycling and C sequestration in these ecosystems is limited. We used a well-replicated 80-year pasture to forest successional chronosequence and primary forest in Puerto Rico to explore the relationships among litterfall, litter quality, decomposition, and soil C pools. Litterfall rates recovered rapidly during early secondary succession and averaged 10.5 (± 0.1 SE) Mg/ha/y among all sites over a 2-year period. Although forest plant community composition and plant life form dominance changed during succession, litter chemistry as evaluated by sequential C fractions and by 13C-nuclear magnetic resonance spectroscopy did not change significantly with forest age, nor did leaf decomposition rates. Root decomposition was slower than leaves and was fastest in the 60-year-old sites and slowest in the 10- and 30-year-old sites. Common litter and common site experiments suggested that site conditions were more important controls than litter quality in this chronosequence. Bulk soil C content was positively correlated with hydrophobic leaf compounds, suggesting that there is greater soil C accumulation if leaf litter contains more tannins and waxy compounds relative to more labile compounds. Our results suggest that most key C fluxes associated with litter production and decomposition re-establish rapidly—within a decade or two—during tropical secondary succession. Therefore, recovery of leaf litter C cycling processes after pasture use are faster than aboveground woody biomass and species accumulation, indicating that these young secondary forests have the potential to recover litter cycling functions and provide some of the same ecosystem services of primary forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号