首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The AP-2 complex is a key factor in the formation of endocytic clathrin-coated vesicles (CCVs). AP-2 sorts and packages cargo membrane proteins into CCVs, binds the coat protein clathrin, and recruits numerous other factors to the site of vesicle formation. Structural information on the AP-2 complex and biochemical work have allowed understanding its function on the molecular level, and recent studies showed that cycles of phosphorylation are key steps in the regulation of AP-2 function. The complex is phosphorylated on both large subunits (alpha- and beta2-adaptins) as well as at a single threonine residue (Thr-156) of the medium subunit mu2. Phosphorylation of mu2 is necessary for efficient cargo recruitment, whereas the functional context of the large subunit phosphorylation is unknown. Here, we show that the subunit phosphorylation of AP-2 exhibits striking differences, with calculated half-lives of <1 min for mu2, approximately 25 min for beta2, and approximately 70 min for alpha. We were also able to purify a phosphatase that dephosphorylates the mu2 subunit. The enzyme is a member of the protein phosphatase 2A family and composed of a catalytic Cbeta subunit, a scaffolding Abeta subunit, and a regulatory Balpha subunit. RNA interference knock down of the latter subunit in HeLa cells resulted in increased levels of phosphorylated adaptors and altered endocytosis, showing that a specific PP2A holoenzyme is an important regulatory enzyme in CCV-mediated transport.  相似文献   

2.
Clathrin-mediated endocytosis is a complex process regulated at many different levels. We showed previously that activation of the angiotensin type 1 receptor (AT1R), which belongs to the G protein-coupled receptor (GPCR) family, leads to c-Src-dependent tyrosine phosphorylation of beta2-adaptin, a subunit of the clathrin adaptor AP-2. The phosphorylation of beta2-adaptin on tyrosine residue 737 (Y737) negatively regulates its interaction with betaarrestin, another important clathrin adaptor for GPCR internalization. Here we sought to determine whether AP-2 phosphorylation represents a general mechanism for different receptors internalizing through the clathrin pathway. Using a specifically designed antibody against the phosphorylated form of Y737 on beta2-adaptin, we demonstrate that this residue is phosphorylated by AT1R in different cell types like HEK293, COS-7 and vascular smooth muscle cells. Using RNA interference approaches, we reveal that this agonist-mediated event is both betaarrestin- and c-Src-dependent, and that it occurs at the plasma membrane in clathrin-coated vesicles (CCVs). We further show that this is not only a common event employed by other GPCRs like the beta2-adrenergic, vasopressin V2, bradykinin type 2, platelet-activating factor and endothelin A receptors but that the epidermal growth factor receptor is capable of eliciting the phosphorylation of AP-2 in CCVs. Our results imply that tyrosine phosphorylation of Y737 on beta2-adaptin is a common regulatory mechanism employed by different receptors undergoing clathrin-dependent endocytosis, and suggest a wider function for this event than originally anticipated.  相似文献   

3.
S Hning  J Griffith  H J Geuze    W Hunziker 《The EMBO journal》1996,15(19):5230-5239
Diversion of membrane proteins from the trans-Golgi network (TGN) or the plasma membrane into the endosomal system occurs via clathrin-coated vesicles (CCVs). These sorting events may require the interaction of cytosolic domain signals with clathrin adaptor proteins (APs) at the TGN (AP-1) or the plasma membrane (AP-2). While tyrosine- and di-leucine-based signals in several proteins mediate endocytosis via cell surface CCVs, segregation into Golgi-derived CCVs has so far only been documented for the mannose 6-phosphate receptors, where it is thought to require a casein kinase II phosphorylation site adjacent to a di-leucine motif. Although recently tyrosine-based signals have also been shown to interact with the mu chain of AP-1 in vitro, it is not clear if these signals also bind intact AP-1 adaptors, nor if they can mediate sorting of proteins into AP-1 CCVs. Here we show that the cytosolic domain of the lysosomal membrane glycoprotein lamp-1 binds AP-1 and AP-2. Furthermore, lamp-1 is present in AP-1-positive vesicles and tubules in the trans-region on the Golgi complex. AP-1 binding as well as localization to AP-1 CCVs require the presence of the functional tyrosine-based lysosomal targeting signal of lamp-1. These results indicate that lamp-1 can exit the TGN in CCVs and that tyrosine signals can mediate these sorting events.  相似文献   

4.
Brown BM  Carlson BL  Zhu X  Lolley RN  Craft CM 《Biochemistry》2002,41(46):13526-13538
In steps of protein purification of bovine retinal protein phosphatase 2A (PP2A), phosducin dephosphorylation activity peaks coelute with a PP2A enzyme complex, shown by peptide sequence analysis to contain a B' subunit, B56 epsilon. Other PP2A complexes with a slightly larger (56.5 kDa) B' subunit (sequenced to be B56 alpha) or with the B alpha regulatory subunit have no phosducin dephosphorylation activity. Upon exposure to light, a significant increase in the immunoreactive protein level of the A, C, and B56 epsilon PP2A subunits is observed in the cytosolic fraction of mouse retina, the phosducin dephosphorylation of which occurs rapidly. During dark exposure, these subunits translocate to the membrane fraction where rhodopsin is slowly dephosphorylated. This PP2A redistribution occurs in less than 1.5 min and is dependent upon light and not upon an intrinsic circadian rhythm. Forty times more of the A subunit (approximately 20 ng/mouse retina) and 9 times more of the C subunit (approximately 4 ng/mouse retina) than of the B56 epsilon subunit (approximately 0.45 ng/mouse retina) redistribute, which suggests that the predominant form of the PP2A enzyme complex on the membrane in the dark is a dimer, consisting of only A and C subunits. We observe that the dimer favors phosphorylated opsin as a substrate, while the trimer, particularly the enzyme complex with the B56 epsilon subunit, greatly prefers phosphorylated phosducin, with an activity several hundred times those of other substrates that were tested. This light-driven PP2A translocation provides a potential mechanism for efficient dephosphorylation of two critical photoreceptor transduction proteins, cytosolic phosducin and membrane-bound rhodopsin, by the same enzyme.  相似文献   

5.
The 50-kilodalton (kDa) assembly polypeptide of bovine brain clathrin coated vesicles (CCVs) is phosphorylated in a cyclic nucleotide- and Ca2+-independent manner and is dephosphorylated by a Mg2+-ATP-dependent CCV phosphatase. This report provides evidence for modulation of the phosphorylation reaction of the 50-kDa assembly polypeptide by phosphorylated clathrin light chain beta (pLC beta). In vitro, phosphorylated LC beta inhibits phosphorylation of the 50-kDa polypeptide in CCVs. Furthermore, incubation of previously phosphorylated 50-kDa polypeptide in CCVs with phosphorylated LC beta results in a rapid dephosphorylation of the 50-kDa assembly polypeptide. Both phenomena are time and concentration dependent. Monoclonal antibodies to LC beta prevent the modulatory effect of phosphorylated LC beta on the 50-kDa assembly polypeptide phosphorylation in CCVs. The results obtained indicate for the first time, to our knowledge, that phosphorylated LC beta has a modulatory role in CCVs. The data also suggest that phosphorylated LC beta promotes activation of a coated vesicle phosphatase.  相似文献   

6.
The coat proteins of clathrin-coated vesicles (CCV) spontaneously self- assemble in vitro, but, in vivo, their self-assembly must be regulated. To determine whether phosphorylation might influence coat formation in the cell, the in vivo phosphorylation state of CCV coat proteins was analyzed. Individual components of the CCV coat were isolated by immunoprecipitation from Madin-Darby bovine kidney cells, labeled with [32P]orthophosphate under normal culture conditions. The predominant phosphoproteins identified were subunits of the AP1 and AP2 adaptors. These included three of the four 100-kD adaptor subunits, alpha and beta 2 of AP2 and beta 1 of AP1, but not the gamma subunit of AP1. In addition, the mu 1 and mu 2 subunits of AP1 and AP2 were phosphorylated under these conditions. Lower levels of in vivo phosphorylation were detected for the clathrin heavy and light chains. Analysis of phosphorylation sites of the 100-kD adaptor subunits indicated they were phosphorylated on serines in their hinge regions, domains that have been implicated in clathrin binding. In vitro clathrin-binding assays revealed that, upon phosphorylation, adaptors no longer bind to clathrin. In vivo analysis further revealed that adaptors with phosphorylated 100-kD subunits predominated in the cytosol, in comparison with adaptors associated with cellular membranes, and that phosphorylated beta 2 subunits of AP2 were exclusively cytosolic. Kinase activity, which converts adaptors to a phosphorylated state in which they no longer bind clathrin, was found associated with the CCV coat. These results suggest that adaptor phosphorylation influences adaptor-clathrin interactions in vivo and could have a role in controlling coat disassembly and reassembly.  相似文献   

7.
The formation of small vesicles is mediated by cytoplasmic coats the assembly of which is regulated by the activity of GTPases, kinases, and phosphatases. A heterotetrameric AP-3 adaptor complex has been implicated in the formation of synaptic vesicles from PC12 endosomes (). When the small GTPase ARF1 is prevented from hydrolyzing GTP, we can reconstitute AP-3 recruitment to synaptic vesicle membranes in an assembly reaction that requires temperatures above 15 degrees C and the presence of ATP suggesting that an enzymatic step is involved in the coat assembly. We have now found an enzymatic reaction, the phosphorylation of the AP-3 adaptor complex, that is linked with synaptic vesicle coating. Phosphorylation occurs in the beta3 subunit of the complex by a kinase similar to casein kinase 1alpha. The kinase copurifies with neuronal-specific AP-3. In vitro, purified casein kinase I selectively phosphorylates the beta3A and beta3B subunit at its hinge domain. Inhibiting the kinase hinders the recruitment of AP-3 to synaptic vesicles. The same inhibitors that prevent coat assembly in vitro also inhibit the formation of synaptic vesicles in PC12 cells. The data suggest, therefore, that the mechanism of AP-3-mediated vesiculation from neuroendocrine endosomes requires the phosphorylation of the adaptor complex at a step during or after AP-3 recruitment to membranes.  相似文献   

8.
Abstract: Multiple sites on the α1 and β subunits of purified skeletal muscle calcium channels are phosphorylated by cyclic AMP-dependent protein kinase, resulting in three different tryptic phosphopeptides derived from each subunit. Phosphoprotein phosphatases dephosphorylated these sites selectively. Phosphoprotein phosphatase 1 (PP1) and phosphoprotein phosphatase 2A (PP2A) dephosphorylated both α1 and β subunits at similar rates, whereas calcineurin dephosphorylated β subunits preferentially. PP1 dephosphorylated phosphopeptides 1 and 2 of the α1 subunit more rapidly than phosphopeptide 3. In contrast, PP2A dephosphorylated phosphopeptide 3 of the α1 subunit preferentially. All three phosphoprotein phosphatases preferentially dephosphorylated phosphopeptide 1 of the β subunit and dephosphorylated phosphopeptides 2 and 3 more slowly. Mn2+ increased the rate and extent of dephosphorylation of all sites by calcineurin so that >80% dephosphorylation of both α1 and β sub-units was obtained. The results demonstrate selective dephosphorylation of different phosphorylation sites on the α1 and β subunits of skeletal muscle calcium channels by the three principal serine/threonine phosphoprotein phosphatases.  相似文献   

9.
In unfractioned reticulocyte lysate, interaction of eukaryotic initiation factor 2 (eIF-2) with other components regulates the accessibility of phosphatases and kinases to phosphorylation sites on its alpha and beta subunits. Upon addition of eIF-2 phosphorylated on both alpha and beta subunits (eIF-2(alpha 32P, beta 32P) to lysate, the alpha subunit is rapidly dephosphorylated, but the beta subunit is not. In contrast, both sites are rapidly dephosphorylated by the purified phosphatase. The basis of this altered specificity appears to be the association of eIF-2 with other translational components rather than an alteration of the phosphatase. Formation of an eIF-2(alpha 32P,beta 32P) Met-tRNAi X GTP ternary complex prevents dephosphorylation of the beta subunit, but has no effect on the rate of alpha dephosphorylation. eIF-2B, a 280,000-dalton polypeptide complex required for GTP:GDP exchange, also protects the beta subunit phosphorylation site from the purified phosphatase. However, the dephosphorylation of eIF-2(alpha 32P) is inhibited by 75% while complexed with eIF-2B. The altered phosphatase specificity upon association of eIF-2 with eIF-2B also affects the access of protein kinases to these phosphorylation sites. In the eIF-2B X eIF-2 complex, the alpha subunit is phosphorylated at 30% the rate of free eIF-2. Under identical conditions, phosphorylation of eIF-2 beta can not be detected. These results illustrate the importance of substrate conformation and/or functional association with other components in determining the overall phosphorylation state allowed by alterations of kinase and phosphatase activities.  相似文献   

10.
Crump CM  Banting G 《FEBS letters》1999,444(2-3):195-200
Tyrosine based motifs conforming to the consensus YXXphi (where phi represents a bulky hydrophobic residue) have been shown to interact with the medium chain subunit of clathrin adaptor complexes. These medium chains are targets for phosphorylation by a kinase activity associated with clathrin coated vesicles. We have used the clathrin coated vesicle associated kinase activity to specifically phosphorylate a soluble recombinant fusion protein of mu2, the medium chain subunit of the plasma membrane associated adaptor protein complex AP-2. We have tested whether this phosphorylation has any effect on the interaction of mu2 with the tyrosine based motif containing protein, TGN38, that has previously been shown to interact with mu2. Phosphorylation of mu2 was shown to have no significant effect on the in vitro interaction of mu2 with the cytosolic domain of TGN38, indicating that reversible phosphorylation of mu2 does not play a role in regulating its direct interaction with tyrosine based internalisation motifs. In addition, although a casein kinase II-like activity has been shown to be associated with clathrin coated vesicles, we show that mu2 is not phosphorylated by casein kinase II implying that another kinase activity is present in clathrin coated vesicles. Furthermore the kinase activity associated with clathrin coated vesicles was shown to be capable of phosphorylating dynamin 1. Phosphorylation of dynamin 1 has previously been shown to regulate its interaction with other proteins involved in clathrin mediated endocytosis.  相似文献   

11.
G protein-gated inwardly rectifying potassium (GIRK) channels are a family of K(+)-selective ion channels that slow the firing rate of neurons and cardiac myocytes. GIRK channels are directly bound and activated by the G protein G beta gamma subunit. As heterotetramers, they comprise the GIRK1 and the GIRK2, -3, or -4 subunits. Here we show that GIRK1 but not the GIRK4 subunit is phosphorylated when heterologously expressed. We found also that phosphatase PP2A dephosphorylation of a protein in the excised patch abrogates channel activation by G beta gamma. Experiments with the truncated molecule demonstrated that the GIRK1 C-terminal is critical for both channel phosphorylation and channel regulation by protein phosphorylation, but the critical phosphorylation sites were not located on the C terminus. These data provide evidence for a novel switch mechanism in which protein phosphorylation enables G beta gamma gating of the channel complex.  相似文献   

12.
Gao Y  Zhou Y  Xie B  Zhang S  Rahmeh A  Huang HS  Lee MY  Lee EY 《Biochemistry》2008,47(43):11367-11376
Protein phosphatase-1 (PP1) is a Ser/Thr protein phosphatase that participates in the phosphorylation/dephosphorylation regulation of a diverse range of cellular processes. The PP1 catalytic subunit (PP1) achieves this by its ability to interact with many targeting subunits such that PP1 activity is thereby specified against phosphoprotein substrates in the microvicinity of its targeting subunit. DNA polymerase delta (Pol delta) is a key enzyme in mammalian chromosomal replication. It consists of four subunits, p125, p50, p68, and p12. We identify p68 as a novel PP1 targeting subunit. PP1 was shown to associate with human DNA polymerase delta by affinity chromatography and coimmunoprecipitation assays from mammalian cell lysates and in vitro by pull-down assays. The binding domain for PP1 was identified as the sequence KRVAL, a variant of the canonical RVxF PP1 binding motif. These studies provide the first evidence for the targeting of PP1 to DNA polymerase delta. We also show that CK2 phosphorylates the Pol delta p125, p68, and p12 subunits and that these phosphorylated subunits are substrates for PP1. These findings identify a new role for p68 as a PP1 targeting subunit that implicates PP1 in the dephosphorylation of Pol delta. Our findings also show that CK2 is a strong candidate for the protein kinase involved in the in vivo phosphorylation of p68.  相似文献   

13.
Tyrosine phosphorylation of the beta2 subunit of clathrin adaptor complex AP-2 was detected in three types of cells treated with epidermal growth factor (EGF). The tyrosine phosphorylation was observed during recruitment of EGF receptors into coated pits at 4 degrees C and reached maximum at 37 degrees C at post-recruitment stages of endocytosis. An inhibitor of EGF receptor kinase completely abolished this phosphorylation in all cell types, whereas the inhibitor of Src family kinases partially inhibited beta2 phosphorylation in A-431 cells but not in HeLa cells. By using beta2 subunit tagged with yellow fluorescent protein that is effectively assembled into AP-2 complex, the major phosphorylation site of beta2 was mapped to Tyr-6. Analysis of cells expressing dominant-interfering mutant mu2 subunit of AP-2 suggested that beta2 phosphorylation is partially mediated by the receptor interaction with the mu2 subunit. Mutation of leucine residues 1010 and 1011 motif in the EGF receptor resulted in the severe inhibition of beta2 tyrosine phosphorylation. From these data, we propose that interactions of the EGF receptor with AP-2 mediated by the receptor 974YRAL and di-leucine motifs may contribute to beta2 tyrosine phosphorylation. Surprisingly, mutation of the Leu-1010/Leu-1011 motif resulted in impaired degradation of EGF receptors, suggesting the role of this motif in lysosomal targeting of the receptor.  相似文献   

14.
Reversible phosphorylation has long been an attractive mechanism to control cycles of coat assembly and disassembly during clathrin-mediated endocytosis. Many of the coat proteins are phosphorylated in vivo and in vitro. Our work has focused on the role of phosphorylation of the mu2 subunit of AP-2 (adaptor protein 2), which appears to be necessary for efficient cargo recruitment. Studies to probe the regulation of mu2 phosphorylation demonstrated that clathrin is a specific activator of the mu2 kinase, and, in permeabilized cells, cargo sequestration, driven by exogenously added clathrin, results in elevated levels of m2 phosphorylation. Furthermore, phosphorylated mu2 is mainly associated with assembled clathrin in vivo and its steady-state level is strongly reduced in cells depleted of clathrin heavy chain. Our results imply a central role for clathrin in the regulation of cargo selection via modulation of phospho-mu2 levels. This is therefore a novel regulatory role for clathrin that is independent of its structural role and that provides elegant spatial control of AP-2 and cargo interactions, ensuring that AP-2 is only activated at the correct cellular location and in the correct functional context. Ongoing studies are exploring further the roles of reversible phosphorylation in the coated vesicle cycle.  相似文献   

15.
Protein phosphatase 2A (PP2A) is a family of heterotrimeric enzymes with diverse functions under physiologic and pathologic conditions such as Alzheimer's disease. All PP2A holoenzymes have in common a catalytic subunit C and a structural scaffolding subunit A. These core subunits assemble with various regulatory B subunits to form heterotrimers with distinct functions in the cell. Substrate specificity of PP2A in vitro is determined by regulatory subunits with leucine 309 of the catalytic subunit C playing a crucial role in the recruitment of regulatory subunits into the complex. Here we expressed a mutant form of Calpha, L309A, in brain and Harderian (lacrimal) gland of transgenic mice. We found an altered recruitment of regulatory subunits into the complex, demonstrating a role for the carboxyterminal leucine of Calpha in regulating holoenzyme assembly in vivo. This was associated with an increased phosphorylation of tau in brain and an impaired dephosphorylation of vimentin demonstrating that both cytoskeletal proteins are in vivo substrates of distinct PP2A holoenzyme complexes.  相似文献   

16.
Sphingosine kinase 1 (SK1) is an important regulator of cellular signalling that has gained recent attention as a potential target for anti-cancer therapies. SK1 activity, subcellular localization and oncogenic function are regulated by phosphorylation and dephosphorylation at Ser225. ERK1/2 have been identified as the protein kinases responsible for phosphorylation and activation of SK1. Conversely, dephosphorylation and deactivation of SK1 occurs by protein phosphatase 2A (PP2A). Active PP2A, however, is a heterotrimer, composed of tightly associated catalytic and structural subunits that can interact with an array of regulatory subunits, which are critical for determining holoenzyme substrate specificity and subcellular localization. Thus, PP2A represents a large family of holoenzyme complexes with different activities and diverse substrate specificities. To date the regulatory subunit essential for targeting PP2A to SK1 has remained undefined. Here, we demonstrate a critical role for the B'α (B56α/PR61α/PPP2R5A) regulatory subunit of PP2A in SK1 dephosphorylation. B'α was found to interact with the c-terminus of SK1, and reduce SK1 phosphorylation when overexpressed, while having no effect on upstream ERK1/2 activation. siRNA-mediated knockdown of B'α increased SK1 phosphorylation, activity and membrane localization of endogenous SK1. Furthermore, overexpression of B'α blocked agonist-induced translocation of SK1 to the plasma membrane and abrogated SK1-induced neoplastic transformation of NIH3T3 fibroblasts. Thus, the PP2A-B'α holoenzyme appears to function as an important endogenous regulator of SK1.  相似文献   

17.
The catalytic subunit of type-1 protein phosphatase (PP1) was phosphorylated by the tyrosine kinase v-abl as follows: (i) cytosolic PP1 was phosphorylated more (0.73 mol/mol) than PP1 obtained from the glycogen particles (0.076 mol/mol), while free catalytic subunit isolated in the active or inactive form from cytosolic PP1 was phosphorylated even less and catalytic subunit complexed with inhibitor-2 was not phosphorylated; (ii) phosphorylation stoichiometry was dependent on the concentration of PP1 and 3 h incubation at 30 degrees C was required for maximal phosphorylation; (iii) phosphorylation was on a tyrosine residue located in the C-terminal region of PP1 which is lost during proteolysis; (iv) phosphorylation did not affect enzyme activity but allowed conversion from the active to the inactive form upon incubation with inhibitor-2 of a PP1 form that in its dephospho-form did not convert.  相似文献   

18.
Phosphorylation of proteins appears as a key process in early steps of clathrin coated vesicle formation. Here, we report that treatment of post-nuclear fraction with alkaline phosphatase induced redistribution of alpha subunits of AP-2 adaptor complex to cytosol and this effect was higher in the alpha2 subunit. A high serine phosphorylation status of alpha subunits correlated with the higher affinity of AP-2 to membranes. Using a simple binding assay, where membranes were incubated with either purified adaptors or cytosols, we observed an inhibitory effect of tyrphostin, a tyrosine kinase inhibitor, on the binding of AP-2 to membranes, but also an unexpected decrease induced by the phosphatase inhibitor cyclosporine. We also show an inhibitory effect of ATP mediated by cytosolic proteins, although it could not be related to the phosphorylation of AP-2, suggesting an action upstream a cascade of phosphorylations that participate in the regulation of the assembly of AP-2 to membranes.  相似文献   

19.
Murakami N  Bolton DC  Kida E  Xie W  Hwang YW 《PloS one》2012,7(4):e34845
Dyrk1A phosphorylated multiple proteins in the clathrin-coated vesicle (CCV) preparations obtained from rat brains. Mass spectrometric analysis identified MAP1A, MAP2, AP180, and α- and β-adaptins as the phosphorylated proteins in the CCVs. Each protein was subsequently confirmed by [(32)P]-labeling and immunological methods. The Dyrk1A-mediated phosphorylation released the majority of MAP1A and MAP2 and enhanced the release of AP180 and adaptin subunits from the CCVs. Furthermore, Dyrk1A displaced adaptor proteins physically from CCVs in a kinase-concentration dependent manner. The clathrin heavy chain release rate, in contrast, was not affected by Dyrk1A. Surprisingly, the Dyrk1A-mediated phosphorylation of α- and β-adaptins led to dissociation of the AP2 complex, and released only β-adaptin from the CCVs. AP180 was phosphorylated by Dyrk1A also in the membrane-free fractions, but α- and β-adaptins were not. Dyrk1A was detected in the isolated CCVs and was co-localized with clathrin in neurons from mouse brain sections and from primary cultured rat hippocampus. Previously, we proposed that Dyrk1A inhibits the onset of clathrin-mediated endocytosis in neurons by phosphorylating dynamin 1, amphiphysin 1, and synaptojanin 1. Current results suggest that besides the inhibition, Dyrk1A promotes the uncoating process of endocytosed CCVs.  相似文献   

20.
A protein phosphatase holo-type enzyme (38, 65, and 75 kDa) preparation and a free catalytic subunit (38 kDa) purified from tulip petals were characterized as protein phosphatase 2A (PP2A) by immunological and biochemical approaches. The plasma membrane containing the putative plasma membrane aquaporin (PM-AQP) was prepared from tulip petals, phosphorylated in vitro, and used as the substrate for both of the purified PP2A preparations. Although both preparations dephosphorylated the phosphorylated PM-AQP at 20 degrees C, only the holo-type enzyme preparation acted at 5 degrees C on the phosphorylated PM-AQP with higher substrate specificity, suggesting that regulatory subunits are required for low temperature-dependent dephosphorylation of PM-AQP in tulip petals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号