首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse μ-opioid receptor carboxy-terminal splice variants have been shown to differ in their responses to agonists.  相似文献   

2.
Summary The study of interstellar molecules broadly includes two areas of interest. One area uses the unique ability of molecules to act as probes of the physical conditions in the cold, dense, visually opaque component of the interstellar medium. The physical properties of this and other components of the interstellar medium are summarized. The other area deals with the chemistry of interstellar molecules, recent aspects of which are emphasized in this review. Gas-phase chemistry, shock chemistry, and grain surface chemistry are discussed in the context of recent observations. No present observations suggest that surface reactions are relevant, but neither can they be ruled out. Ion-molecule reactions are clearly operative, at least for the simpler species. Chemical isotope fractionation is reviewed, andd it is concluded that the complexities of the chemistry allow no cosmological conclusions to be drawn from observations of deuterium in interstellar molecules, while the presence of13C in interstellar molecules permits an estimate of the12C/13C ratio which is consistent with the current concepts of the nucleosynthesis history of the Galaxy. Possible connections between interstellar molecules and the early molecular history of the solar system are discussed.This is the first of a series of papers which will appear in the Synthesis section of the Journal of Molecular Evolution pertaining to the topic Organic Molecules in the Solar System and Beyond.Operated by Associated Universitites, Inc., under contract with the National Science Foundation  相似文献   

3.
Morphoregulatory molecules   总被引:45,自引:0,他引:45  
G M Edelman 《Biochemistry》1988,27(10):3533-3543
  相似文献   

4.
5.
Mind molecules     
Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius "Julie" Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the "high" that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes.  相似文献   

6.
Can a fragrance be revolutionary? In this commentary, the creation of two unusual, extravagant fine fragrances, ‘escentr?c01’ and ‘molecule01’, is described. In response to the fantasy components found in release notes of many recent perfume launches, both center around a single real fragrance raw material, the transparent woody aroma chemical ‘Iso E Super’ ( 1 + 2 ). The perfume ‘escentr?c01’ contains 65% of it, accompanied by Trisamber ( 3 ), red pepper, lime oil, incense and musks, while ‘molecule01’ consists exclusively of ‘Iso E Super’ ( 1 + 2 ). The elegant woody note lives here its own eccentric life – the revolution starts.  相似文献   

7.
Fields of medicine and life sciences are constantly evolving and striving for improved understanding of how cells function at an individual level, small ensemble level, and tissue level. Such improved understanding will translate into developing therapeutic strategies as well as approaches for disease diagnosis. Behavior of cells at all levels is shaped in significant part by secreted molecules that serve as cues for proliferation, migration, death, and other cell life-altering events. Improved understanding of what signals released when by which cells requires novel tools for local detection of cell-secreted molecules. This paper reviews recent efforts by bioengineering and bioanalytical chemistry communities to develop biosensors for detecting molecules in extracellular space. Multiple topics including antibody-, enzyme- and aptamer-based biosensors for cell analysis as well as sensor miniaturization approaches are discussed.  相似文献   

8.
Neurite guidance molecules   总被引:9,自引:0,他引:9  
  相似文献   

9.
Synaptic adhesion molecules   总被引:15,自引:0,他引:15  
Formation, differentiation and plasticity of synapses, the specialized cell-cell contacts through which neurons communicate, all require interactions between pre- and post-synaptic partners. Several synaptically localized adhesion molecules potentially capable of mediating these interactions have been identified recently. Functional studies suggest roles for some of them in target recognition (e.g. SYG-1 and sidekicks), formation and alignment of synaptic specializations (e.g. SynCAM, neuroligin and neurexin), and regulation of synaptic structure and function (e.g. cadherins and syndecan).  相似文献   

10.
A recently reported dual-chain avidin was modified further to contain two distinct, independent types of ligand-binding sites within a single polypeptide chain. Chicken avidin is normally a tetrameric glycoprotein that binds water-soluble d-biotin with extreme affinity (K(d) approximately 10(-15) M). Avidin is utilized in various applications and techniques in the life sciences and in the nanosciences. In a recent study, we described a novel avidin monomer-fusion chimera that joins two circularly permuted monomers into a single polypeptide chain. Two of these dual-chain avidins were observed to associate spontaneously to form a dimer equivalent to the wt tetramer. In the present study, we successfully used this scaffold to generate avidins in which the neighboring biotin-binding sites of dual-chain avidin exhibit two different affinities for biotin. In these novel avidins, one of the two binding sites in each polypeptide chain, the pseudodimer, is genetically modified to have lower binding affinity for biotin, whereas the remaining binding site still exhibits the high-affinity characteristic of the wt protein. The pseudotetramer (i.e., a dimer of dual-chain avidins) has two high and two lower affinity biotin-binding sites. The usefulness of these novel proteins was demonstrated by immobilizing dual-affinity avidin with its high-affinity sites. The sites with lower affinity were then used for affinity purification of a biotinylated enzyme. These "dual-affinity" avidin molecules open up wholly new possibilities in avidin-biotin technology, where they may have uses as novel bioseparation tools, carrier proteins, or nanoscale adapters.  相似文献   

11.
12.
13.
《The Journal of cell biology》1990,111(6):2725-2732
It has recently become clear that both extracellular matrix (ECM) glycoproteins and various cell adhesion molecules (CAMs) can promote neurite outgrowth from primary neurons, though little is known of the intracellular mechanisms through which these signals are transduced. We have previously obtained evidence that protein kinase C function is an important part of the neuronal response to laminin (Bixby, J.L. 1989. Neuron. 3:287-297). Because such CAMs as L1 (Lagenauer, C., and V. Lemmon. 1987. Proc. Natl. Acad. Sci. USA. 84:7753-7757) and N-cadherin (Bixby, J.L. and R. Zhang. 1990. J. Cell Biol. 110:1253-1260) can be purified and used as substrates to promote neurite growth, we have now tested whether the response to CAMs is similarly dependent on protein kinase C. We find that inhibition of protein kinase C inhibits growth on fibronectin or collagen as well as on laminin. In contrast, C kinase inhibition actually potentiates the initial growth response to L1 or N- cadherin. The later "phase" of outgrowth on both of these CAMs is inhibited, however. Additionally, phorbol esters, which have no effect on neurite growth when optimal laminin concentrations are used, potentiate growth even on optimal concentrations of L1 or N-cadherin. The results indicate that different intracellular mechanisms operate during initial process outgrowth on ECM substrates as compared to CAM substrates, and suggest that protein kinase C function is required for continued neurite growth on each of these glycoproteins.  相似文献   

14.
Calcium-dependent cell adhesion molecules   总被引:8,自引:0,他引:8  
The adhesive function of Ca2(+)-dependent CAMS has in the past been studied only indirectly, mainly using immunological techniques. The molecular cloning and information about the primary structure of several CAMs has been an important step in a more detailed molecular analysis. If there is a homophilic interaction between CAMs of neighbouring cells, an important question concerns the specificity of each CAM-mediated adhesiveness. Has each CAM a unique specificity and can this specificity be linked to a defined amino acid sequence? It will be important to elucidate the molecular mechanism of how each CAM interacts with the other. The experiments of Volk et al. (1987) suggest that an interaction of two different CAMs can occur. Since during development a given cell can express more than one CAM such an heterophilic interaction could play some regulatory role. Alternative splicing mechanisms or different protein forms during development or on different cell types have not yet been observed for Ca2(+)-dependent CAMs. However, uvomorulin is assumed to have a slightly different function during development and in adult tissues. During development uvomorulin is involved in the condensation, the pattern formation, and the sorting out of cells. In these processes the uvomorulin-mediated adhesiveness should be controlled, since cells reorganize and migrate during development. For the maintenance of the histoarchitecture in adult tissues uvomorulin might act more as a glue. This argues for the existence of mechanisms to regulate the strength of adhesiveness, and the cytoplasmic domain might be involved in these processes. The association of the cytoplasmic domain of uvomorulin with catenins could be an important observation in this respect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
17.
Identifying the key components in the molecular mechanisms of learning and memory is a highly complex process. Here we look at some specific experimental research that has contributed to our knowledge of molecular memory.  相似文献   

18.
19.
20.
Summary This review presents the current evidence for interferons as cell-regulatory molecules. Apart from inducing an antiviral state, interferon preparations are powerful inhibitors of cell growth and have selective effects on cellular protein synthesis. In addition, interferons are produced during most immune reactions and can exert positive and negative influences on these reactions. Thus interferon molecules are of interest to cell biologists, immunologists, and oncologists. Interferon as a cell regulator offers a unique approach to cancer therapy, but for its judicious use, more understanding of basic mechanisms of action is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号