首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CP320626, a potential antidiabetic drug, inhibits glycogen phosphorylase in synergism with glucose. To elucidate the structural basis of synergistic inhibition, we determined the structure of muscle glycogen phosphorylase b (MGPb) complexed with both glucose and CP320626 at 1.76 A resolution, and refined to a crystallographic R value of 0.211 (R(free)=0.235). CP320626 binds at a novel allosteric site, which is some 33 A from the catalytic site, where glucose binds. The high resolution structure allows unambiguous definition of the conformation of the 1-acetyl-4-hydroxy-piperidine ring supported by theoretical energy calculations. Both CP320626 and glucose promote the less active T-state, thereby explaining their synergistic inhibition. Structural comparison of MGPb--glucose--CP320626 complex with liver glycogen phosphorylase a (LGPa) complexed with a related compound (CP403700) show that the ligand binding site is conserved in LGPa.  相似文献   

2.
The effects of weaning on the level of glycogen and the activities of glycogen synthase and phosphorylase were determined in rat liver. Glycogen levels in rat liver increased at the start of the weaning period and reached a plateau on postnatal day 20. The active form of glycogen synthase increased until postnatal day 19 and then declined. Total glycogen synthase (active + inactive) remained high during the suckling period and declined to a new low level during the weaning period. The activity ratio (active/total) increased from day 16 to days 18-22 and then decreased to the same level as found during the suckling period. At the onset of weaning the active form of phosphorylase decreased, whereas total phosphorylase initially increased and then decreased after postnatal day 20. Both forms of phosphorylase increased again at the end of the weaning period. The activity ratio decreased at the start of weaning and remained low throughout the rest of the weaning period. The effects of premature weaning were similar to those observed in normally weaned animals, but the changes occurred sooner and were more pronounced.  相似文献   

3.
The phosphorylated form of liver glycogen phosphorylase (alpha-1,4-glucan : orthophosphate alpha-glucosyl-transferase, EC 2.4.1.1) (phosphorylase a) is active and easily measured while the dephosphorylated form (phosphorylase b), in contrast to the muscle enzyme, has been reported to be essentially inactive even in the presence of AMP. We have purified both forms of phosphorylase from rat liver and studied the characteristics of each. Phosphorylase b activity can be measured with our assay conditions. The phosphorylase b we obtained was stimulated by high concentrations of sulfate, and was a substrate for muscle phosphorylase kinase whereas phosphorylase a was inhibited by sulfate, and was a substrate for liver phosphorylase phosphatase. Substrate binding to phosphorylase b was poor (KM glycogen = 2.5 mM, glucose-1-P = 250 mM) compared to phosphorylase a (KM glycogen = 1.8 mM, KM glucose-1-P = 0.7 mM). Liver phosphorylase b was active in the absence of AMP. However, AMP lowered the KM for glucose-1-P to 80 mM for purified phosphorylase b and to 60 mM for the enzyme in crude extract (Ka = 0.5 mM). Using appropriate substrate, buffer and AMP concentrations, assay conditions have been developed which allow determination of phosphorylase a and 90% of the phosphorylase b activity in liver extracts. Interconversion of the two forms can be demonstrated in vivo (under acute stimulation) and in vitro with little change in total activity. A decrease in total phosphorylase activity has been observed after prolonged starvation and in diabetes.  相似文献   

4.
Water-soluble carbodiimide (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC) and glycine ethyl ester (GEE) as a nucleophile were used to modify the essential carboxyl group of phosphorylases. The inactive b form of the muscle phosphorylase was modified faster than the active a form and potato phosphorylases. Use of N,N,N',N'-tetramethyl-ethylenediamine (TEMED)-HCl buffer system (pH 6.2) resulted in a remarkable difference from the previous results obtained with phosphate and beta-glycerophosphate buffer systems. That is, the substrate glucose 1-phosphate gave the best protection of the three phosphorylase activities. Glucose and glycogen were also effective to retard the inactivation of muscle phosphorylases, though glycogen was not effective for the potato enzyme. The EDC-GEE-modified phosphorylase b retained the affinity for AMP-Sepharose, though partially modified enzyme completely lost the homotropic cooperativity. Phosphorylase b was subjected to differential labeling with [14C]GEE. A labeled peptide was obtained after CNBr cleavage and peptic digestions, and corresponded to the catalytic site sequence surrounding the GEE-substituted Asp 661 and Glu 664. Either or both of these EDC-modified carboxyl residues may have an important role in the catalytic reaction.  相似文献   

5.
In animals, glycogen phosphorylase (GP) exists in an inactive (T state) and an active (R state) equilibrium that can be altered by allosteric effectors or covalent modification. In Escherichia coli, the activity of maltodextrin phosphorylase (MalP) is controlled by induction at the level of gene expression, and the enzyme exhibits no regulatory properties. We report the crystal structure of E. coli maltodextrin phosphorylase refined to 2.4 A resolution. The molecule consists of a dimer with 796 amino acids per monomer, with 46% sequence identity to the mammalian enzyme. The overall structure of MalP shows a similar fold to GP and the catalytic sites are highly conserved. However, the relative orientation of the two subunits in E. coli MalP is different from both the T and R state GP structures, and there are significant changes at the subunit-subunit interfaces. The sequence changes result in loss of each of the control sites present in rabbit muscle GP. As a result of the changes at the subunit interface, the 280s loop, which in T state GP acts as a gate to control access to the catalytic site, is held in an open conformation in MalP. The open access to the conserved catalytic site provides an explanation for the activity without control in this basic archetype of a phosphorylase.  相似文献   

6.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

7.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

8.
The catalytic role of the cofactor phosphate moiety at the active site of glycogen phosphorylase has been the subject of many investigations including solution-state high-resolution 31P-NMR studies. In this study the pyridoxal phosphate moiety in both the inactive and active forms of microcrystalline phosphorylase b has been investigated by high-resolution 31P magic-angle spinning NMR. The symmetry of the shielding tensor in model compounds at varying degrees of ionization is investigated and the results indicate a marked difference between the dianionic and monoanionic model compounds. Consequently the observed similarity in the principal tensor components describing the shielding tensor of the phosphorus nuclei present at the active site of both the R- and T-state conformations suggests that there is no change in ionization site upon activation in contrast to suggestions based upon isotropic shifts. Since previous relaxation measurements have pointed to the need to consider motional influences in such systems, several plausible models are considered. Subject to the assumption of congruency between the principal axis system describing the shielding interaction and molecular frame determined by the molecular symmetry axes, we conclude that the phosphate cofactor is dianionic in both forms.  相似文献   

9.
Summary Active and total (active + inactive) phosphorylase and glycogen synthetase (I- and D-form) were studied in hamster epididymis in relation to glycogen. Immature and adult, sexually active and regressed animals were examined.Epididymis in adult animals, based on their phosphorylase activity, may be divided into 5 zones. The zone 1 epithelium contains particulate glycogen, rich in phosphorylase and glycogen synthetase. The epithelial cytoplasm also contains moderate phosphorylase activity. The zone 2 epithelium is almost devoid of phosphorylase. The zone 3 epithelium shows considerable phosphorylase activity both in principal and holocrine cells. The epithelium of the zone 4 contains the highest total phosphorylase activity. In the zone 5 epithelium phosphorylase and glycogen are absent, but glycogen synthetase is often observed.Holocrine cells, particularly in zones 3 and 4, contain predominating active phosphorylase, some glycogen, but no synthetase activity. The lumen in the zone 4 often shows a faint staining for glycogen.In immature animals, low phosphorylase activity is always present in the epithelial cells. Holocrine cells are detectable, by their phosphorylase activity, in 4 week animals. The division of zones is usually established slightly before sexual maturation.During the period of sexual regression, phosphorylase diminishes considerably. Glycogen, phosphorylase and glycogen synthetase are, however, detectable in the zone 1 of these animals.  相似文献   

10.
G Philip  G Gringel  D Palm 《Biochemistry》1982,21(13):3043-3050
Linear maltooligosaccharides, e.g., maltoheptaose or terminal 4-O-methylmaltoheptaose, activated by cyanogen bromide, react covalently with rabbit muscle phosphorylases b and a (EC 2.4.1.1). Site-specific modification prevents further binding to glycogen and shifts the phosphorylase a tetramer-dimer equilibrium in favor of the dimer. Use was made of these properties to separate by affinity chromatography and gel filtration phosphorylase a dimers with specifically bound oligosaccharide from unspecifically modified products. The phosphorylase a-maltoheptaose derivative carries one oligosaccharide residue per monomer and can be distinguished from the native enzyme by its electrophoretic mobility in polyacrylamide gels or by affinity electrophoresis. Phosphorylase a preparations with covalently bound maltooligosaccharides are enzymatically active in the presence of a primer and alpha-D-glucopyranose 1-phosphate (glucose-1-P). Methylation of the nonreducing chain terminus of the bound oligosaccharide has no effect on glycogen synthesis. These findings exclude the participation of bound oligosaccharides in chain elongation. Purified covalent phosphorylase a-maltoheptaose complexes are stable dimers. They are no longer activated by glycogen. The properties of covalently modified phosphorylase-oligosaccharides are consistent with and provide direct evidence for the existence of a glycogen storage site in rabbit muscle phosphorylases. Covalent occupation of the storage site renders the affinity of glucose-1-P to phosphorylase a independent of modulation by glycogen, supporting the assumption that the glycogen storage site is involved in interactions with the catalytic site.  相似文献   

11.
Crude extracts of rabbit liver, preincubated to promote the dephosphorylation of enzymes or other regulatory proteins, were used to study the role of cyclic AMP in the activation of glycogen phosphorylase. Inasmuch as endogenous liver phosphorylase was irreversibly altered by the preincubation procedure, crystalline skeletal muscle phosphorylase was used as the substrate in these studies. In the presence of magnesium ions and ATP, phosphorylase b was converted to phosphorylase a, and in an apparent biphasic process the phosphorylase a formed was subsequently converted to phosphorylase b. In the presence of adenosine 3':5'-monophosphate the rate of phosphorylase a formation and the maximal amount of phosphorylase a formed were increased. The cyclic AMP effect was enhanced by glucose-6-P and required the presence of glycogen. The catalytic subunit of cyclic AMP-dependent protein kinase could replace cyclic AMP in the stimulation of phosphorylase a formation. The effects of cyclic AMP or the catalytic subunit were shown to be due to stimulation of phosphorylase kinase rather than to inhibition of phosphorylase phosphatase. Preliminary fractionation experiments showed that it is possible to separate phosphorylase kinase catalytic activity from a factor or factors required for stimulation of its activation by the catalytic subunit.  相似文献   

12.
Hormonal regulation of glycogen metabolism in neonatal rat liver   总被引:5,自引:3,他引:2  
1. The development of active and inactive phosphorylase was determined in rat liver during the perinatal period. No inactive form could be found in tissues from animals less than 19 days gestation or older than the fifth postnatal day. 2. The regulation of phosphorylase in organ cultures of foetal rat liver was examined. None of the agents examined [glucagon, insulin or dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate)] changed the amount of phosphorylase activity. 3. Glycogen concentration in these explants were nevertheless decreased more than twofold by 4h of incubation with glucagon or dibutyryl cyclic AMP. Incubation with insulin for 4h increased the glycogen content twofold. 4. Glycogen synthetase activity was examined in these explants. I-form activity (without glucose 6-phosphate) was found to decrease by a factor of two after 4h of incubation with dibutyryl cyclic AMP, whereas I+D activity (with glucose 6-phosphate) remained nearly constant. Incubation for 4h with insulin increased I-form activity threefold, with only a slight increase in I+D activity. 5. When explants were incubated with insulin followed by addition of dibutyryl cyclic AMP, the effects of insulin on glycogen concentration and glycogen synthetase activity were reversed. 6. These results indicate that the regulation of glycogen synthesis may be the major factor in the hormonal control of glycogen metabolism in neonatal rat liver.  相似文献   

13.
The effects of a number of cryoprotectants on the kinetic and structural properties of glycogen phosphorylase b have been investigated. Kinetic studies showed that glycerol, one of the most commonly used cryoprotectants in X-ray crystallographic studies, is a competitive inhibitor with respect to substrate glucose-1-P with an apparent Ki value of 3.8% (v/v). Cryogenic experiments, with the enzyme, have shown that glycerol binds at the catalytic site and competes with glucose analogues that bind at the catalytic site, thus preventing the formation of complexes. This necessitated a change in the conditions for cryoprotection in crystallographic binding experiments with glycogen phosphorylase. It was found that 2-methyl-2,4-pentanediol (MPD), polyethylene glycols (PEGs) of various molecular weights, and dimethyl sulfoxide (DMSO) activated glycogen phosphorylase b to different extents, by stabilizing its most active conformation, while sucrose acted as a noncompetitive inhibitor and ethylene glycol as an uncompetitive inhibitor with respect to glucose-1-P. A parallel experimental investigation by X-ray crystallography showed that, at 100 K, both MPD and DMSO do not bind at the catalytic site, do not induce any significant conformational change on the enzyme molecule, and hence, are more suitable cryoprotectants than glycerol for binding studies with glycogen phosphorylase.  相似文献   

14.
Glycogen utilization involves glycogen phosphorylase, an enzyme which appears to be a potential target for the regulation of glycaemia, as the liver isoform is a major player for hepatic glucose output. A single C-glucosylated malonitrile allowed for the synthesis of three glucose-based derivatives namely bis-oxadiazoles, bis-amides and a C-glucosylated tetrahydropyrimidin-2-one. When evaluated as glycogen phosphorylase inhibitors, two of the synthesized compounds displayed inhibition in the sub-millimolar range. In silico studies revealed that only one out of the bis-amides obtained and the C-glucosylated tetrahydropyrimidin-2-one may bind at the catalytic site.  相似文献   

15.
FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b-FR258900 complex and refined it to 2.2 A resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where the physiological activator AMP binds. The contacts from FR258900 to glycogen phosphorylase are dominated by nonpolar van der Waals interactions with Gln71, Gln72, Phe196, and Val45' (from the symmetry-related subunit), and also by ionic interactions from the carboxylate groups to the three arginine residues (Arg242, Arg309, and Arg310) that form the allosteric phosphate-recognition subsite. The binding of FR258900 to the protein promotes conformational changes that stabilize an inactive T-state quaternary conformation of the enzyme. The ligand-binding mode is different from those of the potent phenoxy-phthalate and acyl urea inhibitors, previously described, illustrating the broad specificity of the allosteric site.  相似文献   

16.
We identified a P element insertional mutant of the Drosophila glycogen phosphorylase (DGPH) gene. Glycogen phosphorylase protein concentration and enzyme activity are decreased while glycogen content is increased in flies homozygous for the mutant allele. The DGPH gene has been cloned and sequenced; its open reading frame codes for a protein of 844 amino acids with a predicted molecular mass of 97 kDa. Comparison of the conceptual amino acid sequence of the Drosophila glycogen phosphorylase with glycogen phosphorylase sequences from other organisms shows a high degree of homology to mammalian enzymes. All the residues of the allosteric effector binding sites, the active site, and the site of phosphorylation are exactly conserved, but some of the residues of the glycogen storage site are not.  相似文献   

17.
Rats from an inbred strain (NZR/Mh) were found to have high concentrations of glycogen in their livers, even after 24 h of starvation. Despite this, blood glucose concentrations were well maintained on starvation for up to 72 h. The primary defect is a deficiency of liver phosphorylase kinase, causing a lack of active glycogen phosphorylase, although total phosphorylase is normal. The intravenous injection of glucagon caused a rapid activation of cyclic AMP-dependent protein kinase in the liver, but no increase in either phosphorylase kinase or phosphorylase a activity. Although total glycogen synthase activity in the livers of affected rats was higher than normal, glycogen synthase in the active form was very low, presumably as a result of the high liver glycogen content. The condition is transmitted as autosomal recessive and, apart from hepatomegaly, the affected rats appear healthy.  相似文献   

18.
Glycogen metabolism in the liver of the developing rat.   总被引:6,自引:4,他引:2       下载免费PDF全文
1. The total activity of glycogen synthease increased 20-fold from day 17 of gestation to birth at day 22, with a further increase of 18% in the 24h after birth. Active synthase (I) rose 45-fold to a maximum at day 21, fell 40% before birth, and then increased by a similar amount 24h after birth. The fraction of synthase in the active form correlated very well with the deposition of glycogen in the liver. 2. Total phosphorylase had a similar developmental pattern of total synthease with an 18-fold increase from day 17 to day 22. The appearance of active phosphorylase showed a lag-period compared with total phosphorylase and did not increase significantly until day 20. The fraction of phosphorylase in the active form did not correlate at all with glycogen deposition or mobilization. 3. There was a close relationshp between the ratio of phosphorylase a/synthase I and the glycogen content of the liver. An increase or decrease in this ratio would result in glycogenolysis of glycogenesis respectively. 4. It is postulated that a cycle between the two enzymes under basal conditions could exist which permits a continuous turnover of glycogen. Such a system would explain why active phosphorylase is always seen, even under conditions of net glycogen synthesis. The differences in hormone sensitivity of synthase and phosphorylase would also be accounted for as only one enzyme would have to respond acutely to hormonal influences.  相似文献   

19.
BACKGROUND: In muscle and liver, glycogen concentrations are regulated by the coordinated activities of glycogen phosphorylase (GP) and glycogen synthase. GP exists in two forms: the dephosphorylated low-activity form GPb and the phosphorylated high-activity form GPa. In both forms, allosteric effectors can promote equilibrium between a less active T state and a more active R state. GP is a possible target for drugs that aim to prevent unwanted glycogen breakdown and to stimulate glycogen synthesis in non-insulin-dependent diabetes. As a result of a data bank search, 5-chloro-1H-indole-2-carboxylic acid (1-(4-fluorobenzyl)-2-(4-hydroxypiperidin-1-yl)-2-oxoethy l)amide, CP320626, was identified as a potent inhibitor of human liver GP. Structural studies have been carried out in order to establish the mechanism of this unusual inhibitor. RESULTS: The structure of the cocrystallised GPb-CP320626 complex has been determined to 2.3 A resolution. CP320626 binds at a site located at the subunit interface in the region of the central cavity of the dimeric structure. The site has not previously been observed to bind ligands and is some 15 A from the AMP allosteric site and 33 A from the catalytic site. The contacts between GPb and CP320626 comprise six hydrogen bonds and extensive van der Waals interactions that create a tight binding site in the T-state conformation of GPb. In the R-state conformation of GPa these interactions are significantly diminished. CONCLUSIONS: CP320626 inhibits GPb by binding at a new allosteric site. Although over 30 A from the catalytic site, the inhibitor exerts its effects by stabilising the T state at the expense of the R state and thereby shifting the allosteric equilibrium between the two states. The new allosteric binding site offers a further recognition site in the search for improved GP inhibitors.  相似文献   

20.
Glycogen and starch are the major readily accessible energy storage compounds in nearly all living organisms. Glycogen is a very large branched glucose homopolymer containing about 90% alpha-1,4-glucosidic linkages and 10% alpha-1,6 linkages. Its synthesis and degradation constitute central pathways in the metabolism of living cells regulating a global carbon/energy buffer compartment. Glycogen biosynthesis involves the action of several enzymes among which glycogen synthase catalyzes the synthesis of the alpha-1,4-glucose backbone. We now report the first crystal structure of glycogen synthase in the presence and absence of adenosine diphosphate. The overall fold and the active site architecture of the protein are remarkably similar to those of glycogen phosphorylase, indicating a common catalytic mechanism and comparable substrate-binding properties. In contrast to glycogen phosphorylase, glycogen synthase has a much wider catalytic cleft, which is predicted to undergo an important interdomain 'closure' movement during the catalytic cycle. The structures also provide useful hints to shed light on the allosteric regulation mechanisms of yeast/mammalian glycogen synthases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号