首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
泛素/26S蛋白酶体途径与显花植物自交不亲和反应   总被引:4,自引:0,他引:4  
植物的生长和发育离不开短命调控蛋白的有选择性降解,其中一种重要的降解方式就是泛素,26S蛋白酶体途径。在这个途径中,泛素(ubiquitin)和26S蛋白酶体起着至关重要的作用,需要被降解的蛋白会通过E1-E2-E3酶接合反应由Ub进行标记,随后标记蛋白会被26s蛋白酶体识别并降解。自交不亲和反应也正是通过此途径实现的,ARC1(arm repeat containing 1)和SCFs(skp1-cul1-F-box-proteins)作为E3s分别在孢子体自交不亲和和配子体自交不亲和反应中起作用。本文综述了就泛素/26S蛋白酶体途径的组成及其在自交不亲和反应中的作用。  相似文献   

2.
泛素/26S蛋白酶体途径及其在植物生长发育中的功能   总被引:1,自引:0,他引:1  
泛素/26S蛋白酶体途径是一种蛋白高效降解途径,主要负责真核细胞内蛋白的选择性降解.泛素分子主要通过泛素活化酶E1、泛素结合酶E2和泛素-蛋白连接酶E3将靶蛋白泛素化,泛素化的蛋白最后被26S蛋白酶体识别和降解.本文介绍了泛素/26S蛋白体介导的特异性蛋白质降解途经,并对其在植物激素信号、光形态建成、植物衰老、自交不亲和反应、细胞周期调控、花的发育、生物钟节律和非生物胁迫响应中的功能最新研究进展进行了综述.  相似文献   

3.
泛素/26S蛋白酶体途径与植物的生长发育   总被引:6,自引:0,他引:6  
泛素/26S蛋白酶体途径在植物蛋白降解系统中起重要作用,泛素分子主要通过泛素活化酶(E1)、泛素结合酶(E2)和泛素连接酶(E3)将靶蛋白泛素化,泛素化的蛋白最后被26S蛋白酶体识别和降解。泛素蛋白酶体途径参与植物体内的多种生理过程,如花和胚的发育、光形态建成、植物生长物质等几乎所有的生长发育过程,本文主要对泛素/26S蛋白酶体途径及其在植物生长发育过程中的精确调控作用进行综述。  相似文献   

4.
植物泛素/26S蛋白酶体途径研究进展   总被引:6,自引:0,他引:6  
泛素/26S蛋白酶体途径是最重要的,有高度选择性的蛋白质降解途径,由泛素激活酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成,参与调控植物生长发育的多个方面。泛素蛋白酶体途径参与植物体内的众多生理过程,如植物激素信号,光形态建成、自交不亲和反应和细胞周期等。本文就泛素/26S蛋白酶体途径以及在植物生长发育中的作用的研究近况做一综述。  相似文献   

5.
6.
花粉特异F-box基因及其表达产物可能参与的SCF途径   总被引:9,自引:0,他引:9  
泛素蛋白体目标性降解蛋白途径是许多细胞学过程的重要调节体系,底物蛋白泛素化涉及3个酶激反应,其中,作为E3连接酶的SCF复合体对底物的识别是通过亚体F-box蛋白C末端的特异性结构实现的.利用染色体步移等方法,最近在一些配子体型自交不亲和植物S-RNase基因近旁相继发现了一类花粉特异性表达的F-box基因,从而预示泛素介导的SCF蛋白降解途径可能参与配子体自交不亲和反应.  相似文献   

7.
就近几年来泛素降解途径在生长素调节中的作用作了介绍,主要是3个蛋白家族突变体的一系列分子分析研究,即生长素应答因子(auxin responsefactors,ARFs)、生长素/吲哚乙酸(Aux/IAA)家族和泛素蛋白酶解组分.ARFs可以直接与DNA结合,介导生长素调节的基因表达;Aux/IAA通过与ARFs形成异源二聚体阻碍ARFs执行功能;泛素降解途径包括泛素激活酶El、泛素连接酶E2、泛素连接酶E3及26S蛋白酶体.生长素通过促进Aux/IAA与E3-SCFTIR1的相互作用降解Aux/IAA蛋白,释放出的ARFs与DNA结合,调节生长素相关基因表达.COP9(constitutive photomorphogenic locus 9)信号体也通过调节SCFTIl活性参与此过程.  相似文献   

8.
植物泛素结合酶E2功能研究进展   总被引:4,自引:0,他引:4  
泛素-26S蛋白酶体途径是细胞内蛋白质选择性降解的重要途径,广泛参与植物生长发育相关过程。该途径中关键酶主要包括泛素活化酶(E1)、泛素结合酶(E2)和泛素连接酶(E3),对靶蛋白泛素化起重要作用。在简单概述泛素化过程的基础上,主要对近年来植物E2蛋白在DNA修复、光周期和维管分化调控,缺素及抗逆胁迫响应中的功能进行综述,为今后该蛋白功能的深入研究及木本植物中该功能基因的发掘奠定基础。  相似文献   

9.
为了解泛素活化酶E1基因(UBE1)在无籽沙糖桔自交不亲和反应中的作用,通过根癌农杆菌介导法将来源于自交不亲和无籽沙糖桔(Citrus reticulata ‘Wuzishatangju’) WUBE1基因转化烟草(Nicotiana tabacum)。结果表明,外源基因WUBE1已导入烟草基因组中并得到表达。转WUBE1基因的自交授粉组合花粉管在生长过程中,部分花粉管出现停止生长的现象,到达花柱基部的花粉管数量少于异交授粉和野生型自交组合。转WUBE1基因烟草的花粉生活力、发芽率、自交和异交后每个果荚中的种子数与野生型烟草无显著差异。这表明单一的WUBE1基因不能调控无籽沙糖桔自交不亲和反应,很可能是通过Ub/26S途径参与了无籽沙糖桔自交不亲和反应。  相似文献   

10.
孢子体型自交不亲和反应臂重复蛋白ARC1   总被引:3,自引:0,他引:3  
王茂广 《生命科学》2007,19(1):86-89
臂重复蛋白ARC1(arm repeat containing 1,ARC1)是孢子体型自交不亲和信号传导途径下游非常重要的蛋白质因子,由臂重复结构域、U-box结构域、亮氨酸拉链,卷曲螺旋结构域、1个核定位信号和2个核输出信号组成,其中臂重复结构域和U—box结构域起主要功能。ARC1具有E3泛素连接酶活性,能够促进自交不亲和反应(self-incompatibility,SI)中的信号传导元件泛素化并降解。本文综述了ARC1蛋白的结构和功能,旨在阐明它在SI反应中的作用。  相似文献   

11.
泛素蛋白酶体途径及其对植物生长发育的调控   总被引:3,自引:1,他引:2  
泛素蛋白酶体途径主要由泛素活化酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成。泛素活化酶首先激活泛素分子,然后把泛素转移到泛素结合酶上。泛素结合酶结合泛素蛋白连接酶并把泛素转移到底物蛋白上使底物泛素化,或把泛素转移到泛素蛋白连接酶再使底物泛素化。泛素化的蛋白通常通过26S蛋白酶体进行降解。初步的研究结果表明,植物生长发育的很多方面受泛素蛋白酶体介导的蛋白降解途径的调控。  相似文献   

12.
泛素蛋白酶体途径及其对植物生长发育的调控   总被引:1,自引:0,他引:1  
宋素胜  谢道昕 《植物学报》2006,23(5):564-577
泛素蛋白酶体途径主要由泛素活化酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成。泛素活化酶首先激活泛素分子, 然后把泛素转移到泛素结合酶上。泛素结合酶结合泛素蛋白连接酶并把泛素转移到底物蛋白上使底物泛素化, 或把泛素转移到泛素蛋白连接酶再使底物泛素化。泛素化的蛋白通常通过26S蛋白酶体进行降解。初步的研究结果表明, 植物生长发育的很多方面受泛素蛋白酶体介导的蛋白降解途径的调控。  相似文献   

13.
14.
15.
Ubiquitin (Ub)–protein conjugates formed by purified ring‐finger or U‐box E3s with the E2, UbcH5, resist degradation and disassembly by 26S proteasomes. These chains contain multiple types of Ub forks in which two Ub's are linked to adjacent lysines on the proximal Ub. We tested whether cells contain factors that prevent formation of nondegradable conjugates and whether the forked chains prevent proteasomal degradation. S5a is a ubiquitin interacting motif (UIM) protein present in the cytosol and in the 26S proteasome. Addition of S5a or a GST‐fusion of S5a's UIM domains to a ubiquitination reaction containing 26S proteasomes, UbcH5, an E3 (MuRF1 or CHIP), and a protein substrate, dramatically stimulated its degradation, provided S5a was present during ubiquitination. Mass spectrometry showed that S5a and GST–UIM prevented the formation of Ub forks without affecting synthesis of standard isopeptide linkages. The forked Ub chains bind poorly to 26S proteasomes unlike those synthesized with S5a present or linked to Lys63 or Lys48 chains. Thus, S5a (and presumably certain other UIM proteins) function with certain E3/E2 pairs to ensure synthesis of efficiently degraded non‐forked Ub conjugates.  相似文献   

16.
F-box proteins: the key to protein degradation   总被引:4,自引:0,他引:4  
Summary The eukaryotic protein degradation pathway involves the ubiquitin (Ub) modification of substrates targeted for degradation by the 26S proteasome. The addition of Ub, a process called ubiquitination, is mediated by enzymes including the E3 Ub ligases which transfer the Ub to targeted substrates. A major type of E3 Ub ligases, the SCF (Skp–Cullin–F-box) complex, is composed of four major components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein. The F-box component of the SCF machineries is responsible for recognizing different substrates for ubiquitination. Interaction with components of the SCF complex is mediated through the F-box motif of the F-box protein while it associates with phosphorylated substrates through its second protein–protein interaction motif such as Trp–Asp (WD) repeats or leucine-rich repeats (LRRs). By targeting diverse substrates, F-box proteins exert controls over stability of proteins and regulate the mechanisms for a wide-range of cellular processes. Here we discuss the importance of F-box proteins by providing a general overview and examples of how F-box proteins function in various cellular settings such as tissue development, cell proliferation, and cell death, in the modeling organism Drosophila.  相似文献   

17.
E2s: structurally economical and functionally replete   总被引:1,自引:0,他引:1  
Ubiquitination is a post-translational modification pathway involved in myriad cellular regulation and disease pathways. The Ub (ubiquitin) transfer cascade requires three enzyme activities: a Ub-activating (E1) enzyme, a Ub-conjugating (E2) enzyme, and a Ub ligase (E3). Because the E2 is responsible both for E3 selection and substrate modification, E2s function at the heart of the Ub transfer pathway and are responsible for much of the diversity of Ub cellular signalling. There are currently over 90 three-dimensional structures for E2s, both alone and in complex with protein binding partners, providing a wealth of information regarding how E2s are recognized by a wide variety of proteins. In the present review, we describe the prototypical E2-E3 interface and discuss limitations of current methods to identify cognate E2-E3 partners. We present non-canonical E2-protein interactions and highlight the economy of E2s in their ability to facilitate many protein-protein interactions at nearly every surface on their relatively small and compact catalytic domain. Lastly, we compare the structures of conjugated E2~Ub species, their unique protein interactions and the mechanistic insights provided by species that are poised to transfer Ub.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号