首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of tight junctions with membrane channels and transporters   总被引:1,自引:0,他引:1  
Tight junctions are unique organelles in epithelial cells. They are localized to the apico-lateral region and essential for the epithelial cell transport functions. The paracellular transport process that occurs via tight junctions is extensively studied and is intricately regulated by various extracellular and intracellular signals. Fine regulation of this transport pathway is crucial for normal epithelial cell functions. Among factors that control tight junction permeability are ions and their transporters. However, this area of research is still in its infancy and much more needs to be learned about how these molecules regulate tight junction structure and functions. In this review we have attempted to compile literature on ion transporters and channels involved in the regulation of tight junctions.  相似文献   

2.
Tight junctions are unique organelles in epithelial cells. They are localized to the apico-lateral region and essential for the epithelial cell transport functions. The paracellular transport process that occurs via tight junctions is extensively studied and is intricately regulated by various extracellular and intracellular signals. Fine regulation of this transport pathway is crucial for normal epithelial cell functions. Among factors that control tight junction permeability are ions and their transporters. However, this area of research is still in its infancy and much more needs to be learned about how these molecules regulate tight junction structure and functions. In this review we have attempted to compile literature on ion transporters and channels involved in the regulation of tight junctions.  相似文献   

3.
4.
Major changes in intra- and extracellular pH homoeostasis are shared features of most solid tumours. These changes stem in large part from the metabolic shift of most cancer cells towards glycolytic metabolism and other processes associated with net acid production. In combination with oncogenic signalling and impact from factors in the tumour microenvironment, this upregulates acid-extruding plasma membrane transport proteins which maintain intracellular pH normal or even more alkaline compared with that of normal cells, while in turn acidifying the external microenvironment. Mounting evidence strongly indicates that this contributes significantly to cancer development by favouring e.g. cancer cell migration, invasion and chemotherapy resistance. Finally, while still under-explored, it seems likely that non-cancer cells in the tumour microenvironment also exhibit altered pH regulation and that this may contribute to their malignant properties. Thus, the physical tumour microenvironment and the cancer and stromal cells within it undergo important reciprocal interactions which modulate the tumour pH profile, in turn severely impacting on the course of cancer progression. Here, we summarize recent knowledge of tumour metabolism and the tumour microenvironment, placing it in the context of tumour pH regulation, and discuss how interfering with these properties may be exploited clinically.  相似文献   

5.
M M Falk  L K Buehler  N M Kumar    N B Gilula 《The EMBO journal》1997,16(10):2703-2716
Several different gap junction channel subunit isotypes, known as connexins, were synthesized in a cell-free translation system supplemented with microsomal membranes to study the mechanisms involved in gap junction channel assembly. Previous results indicated that the connexins were synthesized as membrane proteins with their relevant transmembrane topology. An integrated biochemical and biophysical analysis indicated that the connexins assembled specifically with other connexin subunits. No interactions were detected between connexin subunits and other co-translated transmembrane proteins. The connexins that were integrated into microsomal vesicles assembled into homo- and hetero-oligomeric structures with hydrodynamic properties of a 9S particle, consistent with the properties reported for hexameric gap junction connexons derived from gap junctions in vivo. Further, cell-free assembled homo-oligomeric connexons composed of beta1 or beta2 connexin were reconstituted into synthetic lipid bilayers. Single channel conductances were recorded from these bilayers that were similar to those measured for these connexons produced in vivo. Thus, this is the first direct evidence that the synthesis and assembly of a gap junction connexon can take place in microsomal membranes. Finally, the cell-free system has been used to investigate the properties of alpha1, beta1 and beta2 connexin to assemble into hetero-oligomers. Evidence has been obtained for a selective interaction between individual connexin isotypes and that a signal determining the potential hetero-oligomeric combinations of connexin isotypes may be located in the N-terminal sequence of the connexins.  相似文献   

6.
le Coutre J  Kaback HK 《Biopolymers》2000,55(4):297-307
Escherichia coli lactose permease, a paradigm for membrane transport proteins, and Streptomyces lividans KcsA, a paradigm for K+ channels, are compared on the level of structure, dynamics, and function. The homotetrameric channel, which allows the downhill movement of K+ with an electrochemical gradient, is relatively rigid and inflexible, as observed by Fourier transform infrared spectroscopy. Lactose permease catalyzes transduction of free energy stored in an electrochemical H+ gradient into work in the form of a concentration gradient. In marked contrast to KcsA, the permease exhibits a high degree of H/D exchange, in addition to enhanced sensitivity to lateral lipid packing pressure, thereby indicating that this symport protein is extremely flexible and conformationally active. Finally, the differences between lactose permease and KcsA are discussed in the context of their specific functions with particular emphasis on differences between coupling in symport proteins and gating in channels.  相似文献   

7.
Recent studies show that transporters integrate into the lipid bilayer using topogenic sequences present throughout the entire polypeptide chain. These topogenic sequences can act in unpredictable ways with new translocation/stop transfer activities. In addition, a new membrane-insertion pathway has been identified in bacteria with homologs in mitochondria and chloroplasts.  相似文献   

8.
Membrane proteins span a large variety of different functions such as cell-surface receptors, redox proteins, ion channels, and transporters. Proteins with functional pores show different characteristics of helix-helix packing as other helical membrane proteins. We found that the helix-helix contacts of 13 nonhomologous high-resolution structures of membrane channels and transporters are mainly accomplished by weakly polar amino acids (G > S > T > F) that preferably create contacts every fourth residue, typical for right-handed helix crossings. There is a strong correlation between the now available biological hydrophobicity scale and the propensities of the weakly polar and hydrophobic residues to be buried at helix-helix interfaces or to be exposed to the lipids in membrane channels and transporters. The polar residues, however, make no major contribution towards the packing of their transmembrane helices, and are therefore subsumed to be primarily exposed to the polar milieu during the folding process. The contact formation of membrane channels and transporters is therefore ruled by the solubility of the residues, which we suppose to be the driving force for the assembly of their transmembrane helices. By contrast, in 14 nonhomologous high-resolution structures of other membrane protein coils, also large and polar amino acids (D > S > M > Q) create characteristic contacts every 3.5th residues, which is a signature for left-handed helix crossings. Accordingly, it seems that dependent on the function, different concepts of folding and stabilization are realized for helical membrane proteins. Using a sequence-based matrix prediction method these differences are exploited to improve the prediction of buried and exposed residues of transmembrane helices significantly. When the sequence motifs typical for membrane channels and transporters were applied for the prediction of helix-helix contacts the quality of prediction rises by 16% to an average value of 76%, compared to the same approach when only single amino acid positions are taken into account.  相似文献   

9.
10.
On the basis of functional and phylogenetic criteria, we have identified a total of 229 subfamilies and 111 singletons predicted to carry out transport or other membrane functions in Saccharomyces cerevisiae. We have extended the Transporter Classification (TC) and created a Membrane Classification (MC) for non-transporter membrane proteins. Using the preliminary phylogenetic digits X, Y, Z (for new families, subfamilies, and clusters, respectively), we allocated a five-digit number to 850 proteins predicted to contain more than two transmembrane domains. Compared with a previous TC of the yeast genome, we classified an additional set of 538 membrane proteins (transporters and non-transporters) and identified 111 novel phylogenetic subfamilies. Electronic Publication  相似文献   

11.
12.
The past twenty years have revealed the existence of numerous ion channel mutations resulting in human pathology. Ion channels provide the basis of diverse cellular functions, ranging from hormone secretion, excitation–contraction coupling, cell signaling, immune response, and trans-epithelial transport. Therefore, the regulation of biophysical properties of channels is vital in human physiology. Only within the last decade has the role of non-ion channel components come to light in regard to ion channel spatial, temporal, and biophysical regulation in physiology. A growing number of auxiliary components have been determined to play elemental roles in excitable cell physiology, with dysfunction resulting in disorders and related manifestations. This review focuses on the broad implications of such dysfunction, focusing on disease-causing mutations that alter interactions between ion channels and auxiliary ion channel components in a diverse set of human excitable cell disease. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé  相似文献   

13.
The transport of glutamate is coupled to the co-transport of three Na+ ions and the countertransport of one K+ ion. In addition to this carrier-type exchange behaviour, glutamate transporters also behave as chloride channels. The chloride channel activity is strongly influenced by the cations that are involved in coupled flux, making glutamate transporters representative of the ambiguous interface between carriers and channels. In this paper, we review the interaction of alkali cations with glutamate transporters in terms of these diverse functions. We also present a model derived from electrostatic mapping of the predicted cation-binding sites in the X-ray crystal structure of the Pyrococcus horikoshii transporter GltPh and in its human glutamate transporter homologue EAAT3. Two predicted Na+-binding sites were found to overlap precisely with the Tl+ densities observed in the aspartate-bound complex. A novel third site predicted to favourably bind Na+ (but not Tl+) is formed by interaction with the substrate and the occluding HP2 loop. A fourth predicted site in the apo state exhibits selectivity for K+ over both Na+ and Tl+. Notably, this K+ site partially overlaps the glutamate-binding site, and their binding is mutually exclusive. These results are consistent with kinetic and structural data and suggest a plausible mechanism for the flux coupling of glutamate with Na+ and K+ ions.  相似文献   

14.
CLC proteins are found in cells from prokaryotes to mammals and perform functions in plasma membranes and intracellular vesicles. Several genetic human diseases and mouse models underscore their broad physiological functions in mammals. These functions range from the control of excitability to transepithelial transport, endocytotic trafficking and acidification of synaptic vesicles. The recent crystallization of bacterial CLC proteins gave surprising insights into CLC Cl(-)-channel permeation and gating and provides an excellent basis for structure-function studies. Surprisingly, the CLC from Escherichia coli functions as a Cl-/H+ exchanger, thus demonstrating the thin line separating transporters and channels.  相似文献   

15.
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

16.
Controlled chloride movement across membranes is essential for a variety of physiological processes ranging from salt homeostasis in the kidneys to acidification of cellular compartments. The CLC family is formed by two, not so distinct, sub-classes of membrane transport proteins: Cl- channels and H+/Cl- exchangers. All CLC's are homodimers with each monomer forming an individual Cl- permeation pathway which appears to be largely unaltered in the two CLC sub-classes. Key residues for ion binding and selectivity are also highly conserved. Most CLC's have large cytosolic carboxy-terminal domains containing two cystathionine β-synthetase (CBS) domains. The C-termini are critical regulators of protein trafficking and directly modulate Cl- by binding intracellular ATP, H+ or oxidizing compounds. This review focuses on the recent mechanistic insights on the how the structural similarities between CLC channels and transporters translate in unexpected mechanistic analogies between these two sub-classes.  相似文献   

17.
In recent years, our understanding of the importance of membrane transporters (MTs) in the disposition of and response to drugs has increased significantly. MTs are proteins that regulate the transport of endogenous molecules and xenobiotics across the cell membrane. In mammals, two super-families have been identified: ATP-binding cassette (ABC) and solute carrier (SLC) transporters. There is evidence that MTs might mediate polyamines (PA) transport. PA are ubiquitous polycations which are found in all living cells. In mammalian cells, three major PA are synthesised: putrescine, spermidine and spermine; whilst the decarboxylated arginine (agmatine) is not produced by mammals but is synthesised by plants and bacteria. In addition, research in the PA field suggests that PA are transported into cells via a specific transporter, the polyamine transport system(s) (PTS). Although the PTS has not been fully defined, there is evidence that some of the known MTs might be involved in PA transport. In this mini review, eight SLC transporters will be reviewed and their potential to mediate PA transport in human cells discussed. These transporters are SLC22A1, SLC22A2, SLC22A3, SLC47A1, SLC7A1, SLC3A2, SLC12A8A, and SLC22A16. Preliminary data from our laboratory have revealed that SLC22A1 might be involved in the PA uptake; in addition to one member of ABC superfamily (MDR1 protein) might also mediate the efflux of polyamine like molecules.  相似文献   

18.
The resorbing osteoclast is an exceptional cell that secretes large amounts of acid through the coupled activity of a v-type H+-ATPase and a chloride channel that both reside in the ruffled membrane. Impairment of this acid secretion machinery by genetic mutations can abolish bone resorption activity, resulting in osteopetrotic phenotypes. Another key feature of osteoclasts is the transport of high amounts of calcium and phosphate from the resorption lacuna to the basolateral plasma membrane. Evidence exists that this occurs in part through entry of these ions into the osteoclast cytosol. Handling of such large amounts of a cellular messenger requires elaborate mechanisms. Membrane proteins that regulate osteoclast calcium homeostasis and the effect of calcium on osteoclast function and survival are therefore the second main focus of this review.  相似文献   

19.
20.
After decades of absent or lackluster growth, recent years have at long last witnessed an exponential growth in the number of novel membrane protein structures determined. Every single achievement has had a tremendous impact on the scientific community, providing an unprecedented wealth of information that typically only an atomic resolution structure can contribute to our molecular understanding of how a protein functions. Presented here is a review of some of the most exciting novel structures of channels and transporters determined by X-ray crystallography in the last two years, and a discussion of their analogies, differences and mechanistic implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号