首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A successive C-terminal amino acid truncation reaction of peptides and proteins with a vapor generated from a low-concentrated perfluoric acid in acetic anhydride is presented. The reaction products were analyzed with matrix-assisted laser desorption/ionization-time of flight mass-spectrometry giving molecular mass ions of the C-terminal truncated peptides or proteins from which the C-terminal sequence information can be deduced. Acetylation reaction preceded the truncation reaction in order to protect the amino groups and other reactive groups in peptides and proteins, and after the truncation reaction, hydration reaction was carried out to afford cleaner mass spectra.  相似文献   

2.
The reversible reaction of exo-cis-3,6-endo-epoxy-4,5-cis-epoxyhexahydrophthalic anhydride (EEHPA) with free protein amino groups is described. The free protein amino groups of lysozyme can be completely blocked through the reaction of the anhydride EEHPA. The chemically less reactive epoxy groups in EEHPA-modified lysozyme remain intact during modification of the protein and can be used for many subsequent chemical reactions. Hydrolysis of the modified inactive lysozyme at pH 2.5 results in deblocking and almost complete recovery of the enzymic activity of the protein. The epoxy groups in EEHPA-modified proteins have a great many potential uses: disaggregation of supramolecular structures, conversion of hydrophobic membrane proteins or tryptic peptides into water-soluble coloured proteins or peptides, inhibition of tryptic cleavage at lysine residues, synthesis of chemically reactive proteins or enzymes for affinity chromatography or immobilized-enzyme technology, two-dimensional separation techniques for complex protein mixtures, detection of specific protein-binding sites for organic substrates or tumour diagnostics, synthesis of defined artificial glycoproteins for biophysical and cytochemical studies and chemical synthesis of radioactively labelled proteins.  相似文献   

3.
The measurement of amino groups in proteins and peptides   总被引:10,自引:3,他引:7  
A technique is examined for determining amino groups with 2,4,6-trinitrobenzenesulphonic acid, in which the extinction at 420nm of sulphite complexes of the trinitrophenylated amino groups is measured. The sensitivity of the method is 5-200nmol of amino group. The method is especially suitable for checking the extent of blocking or unblocking of amino groups in proteins and peptides, owing to the short time required for reaction (5min at room temperature). The reaction of the reagent with thiol groups has been studied and was found to proceed 30-50 times faster than with in-amino groups of model compounds. The in(420) of a trinitrophenylated thiol group was found to be 2250m(-1).cm(-1). The reaction with several amino acids, peptides and proteins is presented. The in(420) of a typical alpha-amino group was found to be 22000m(-1).cm(-1) and that of an in-amino group, 19200m(-1).cm(-1). Difficulties inherent in the analysis of constituent amino group reactions in proteins are discussed.  相似文献   

4.
The effect of lipid peroxidation on the protein conformation of the porcine intestinal brush-border membranes was studied using a fluorogenic thiol reagent, N-[7-dimethylamino-4-methylcoumarinyl]maleimide (DACM). By a kinetic analysis of the reaction of the membranes with DACM, it was shown that the reaction rate of the SH groups (SHf) of the membrane proteins, whose reaction with the dye is very fast, decreases in proportion to the extent of thiobarbituric acid-reactive substance formation. The difference in the rate of the reaction of the SHf groups for DACM between the control and peroxidized membranes completely disappeared after denaturation of the proteins by treatment with guanidine hydrochloride. The reaction of DACM with the SHf groups of the control membranes accelerated when the temperature was increased with an apparent transition temperature between 25 degrees C and 30 degrees C. On the other hand, no transition was observed in the peroxidized membranes over the temperature range 20-43 degrees C. These results suggest that the conformation around the SHf groups of the proteins in the peroxidized membranes is apparently different from that in the control membranes. A modification of the conformation around the SH groups in the membrane proteins associated with lipid peroxidation was further demonstrated by finding that the quenching efficiency of the fluorescence of the DACM-labeled membranes by Tl+ was markedly decreased after lipid peroxidation. Based on these results, changes in the protein conformation of the porcine intestinal brush-border membranes by lipid peroxidation are discussed.  相似文献   

5.
Transglutaminase catalyzes the formation of intermolecular and intramolecular ε-(γ-glutamyl)lysyl crosslinks in proteins. The study here examined the substrate effectiveness of soybean 7S and 11S proteins in the intermolecular-crosslinking reaction catalyzed by guinea pig liver transglutaminase.

Both 7S and 11S proteins could act as the substrate for the transglutaminase reaction. The reaction with 11S protein was faster than that of 7S protein. Analyses of the reaction products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that three main subunit groups of 7S protein and two acidic subunit groups of 11S protein were polymerized through the formation of intermolecular crosslinks by transglutaminase. Interestingly enough, no intermolecular crosslink was formed between the basic subunits of 11S protein. The possible significance of the intermolecular crosslinking catalyzed by transglutaminase is discussed, including the use of this enzyme reaction to improve the properties of food protein.  相似文献   

6.
1. The reaction of several peptides and proteins with diborane was studied under different conditions to determine those most suitable for the specific reduction of carboxyl groups. 2. In the reaction of model peptides and the cyclic peptides bacitracin and tyrocidin, reduction at 0 degrees was entirely specific for the carboxyl groups without affecting the peptide bonds. Acid amide residues were not reduced. Some tripeptides showed anomalous results in that the C-terminal residue was quite resistant to reduction. 3. Specific reduction of carboxyl groups was achieved in each of the following proteins: human serum albumin, egg albumin, adult human haemoglobin, sperm-whale apomyoglobin, horse heart cytochrome c and egg-white lysozyme. The C-terminal amino acid was usually reduced. 4. Conditions for specific reduction of all available carboxyl groups are not easily found and may vary from one substance to another. Specific reduction of a limited number of available carboxyl groups may be generally accomplished by reactions at -10 degrees . 5. It is suggested that this chemical modification, which has the advantage of permanence, may be useful in studying the role of carboxyl groups in the conformation of proteins and in the biological properties of peptides and proteins.  相似文献   

7.
1. The synthesis of methyl 5-iodopyridine-2-carboximidate and its reaction with amino groups of model compounds and performic acid-oxidized insulin are described. The reagent was designed to introduce heavy atoms into specific sites in proteins. 2. Specific reaction with the amino groups of oxidized insulin can be achieved under reasonably mild conditions giving rise to the corresponding N-monosubstituted amidines. 3. The extent of reaction of this reagent with protein amino groups can be readily determined by difference spectroscopy. Modification of lysine residues inhibits tryptic cleavage at such residues, and this can be of assistance in establishing the site of modification in the primary structure. 4. Evidence is presented to show that methyl 5-iodopyridine-2-carboximidate can react specifically, at pH5.0, with the aromatic amino group of 3-amino-l-tyrosine; the final product of this reaction is a 2-arylbenzoxazole. 5. The use of this reagent as a general method for preparing heavy-atom isomorphous derivatives of proteins is discussed.  相似文献   

8.
Protoporphyrin-sensitized photooxidation in human red blood cell membranes leads to severe deterioration of membrane structure and function. The membrane damage is caused by direct oxidation of amino acid residues, with subsequent cross-linking of membrane proteins. The chemical nature of these cross-links was studied in model systems, isolated spectrin and red cell ghosts. Cysteine and methionine are not involved in the cross-linking reaction. Further it could be shown that dityrosine formation, the crucial mechanism in oxidative cross-linking of proteins by peroxidase-H2O2 treatment, plays no role in photodynamic cross-linking. Experimental evidence indicated that a secondary reaction between free amino groups and a photooxidation product of histidine, tyrosine or tryptophan is involved in photodynamic cross-linking. This was deduced from the reaction observed between compounds containing a free amino group and photooxidation products of these amino acids, both in model systems, isolated spectrin and erythrocyte ghosts. In accordance, succinylation of free amino groups of membrane proteins or addition of compounds with free amino groups protected against cross-linking. Quantitative data and consideration of the reaction mechanisms of photodynamic oxidation of amino acids make it highly probable that an oxidation product of histidine rather than of tyrosine or tryptophan is involved in the cross-linking reaction, via a nucleophilic addition by free amino groups.  相似文献   

9.
Amino groups of proteins can be alkylated by reaction with a variety of aldehydes or ketones in the presence of several different mild reducing agents. Because reductive alkylation occurs under mild conditions and has relatively minor effects on most proteins, it is becoming one of the more important methods for protein modification. This report discusses some of the recent applications of this reaction.  相似文献   

10.
The effect of protein conformations on the reaction rate of Ellman's reagent, 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) with sulfhydryl (SH) groups of proteins was examined. The stopped-flow method was applied to follow the reaction of DTNB with SH group of two proteins, bovine serum albumin (BSA) and ovalbumin (OVA), at various concentrations of guanidine hydrochloride and urea. The rates for both the proteins were faster in guanidine than in urea. The rate sharply depended on the protein conformations, which were monitored by changes of helix contents on the basis of the circular dichroism measurements. The reaction rate of DTNB with SH groups of BSA was maximal around 2 M guanidine and 5 M urea. On the other hand, the reaction rate of DTNB with OVA was maximal at 3.5 M guanidine, while it gradually increased with an increase in the urea concentration. The amount of reactive SH group participating in the reaction with DTNB was also estimated by the absorbance change at 412 nm. The magnitudes of absorbance change for the reaction with free SH groups of OVA at low concentrations of the denaturants were appreciably smaller than those for BSA with one free SH group. Most of the four SH groups of OVA might react with DTNB above 5 M guanidine, although only a part of them did even at 9 M urea.  相似文献   

11.
Membranes of sarcoplasmic reticulum were labelled with 1-fluoro-2,4-dinitro[3H]benzene at pH 6.5 and with 2,4,6-trinitrobenzenesulphonate at pH 9.2. Conditions were chosen to restrict reaction to amino groups, and the effect of blockings of these groups by methyl acetimidate was determined. All proteins were labelled to some extent by both reagents, but, whereas the trinitrophenylation of both lipid and protein amino groups was almost completely blocked by methyl acetimidate, the dinitrophenylation of the ATPase at pH 6.5 was much less affected. The seven amino groups on the ATPase that were labelled under these conditions did not react with methyl acetimidate. This reagent can therefore be used to enhance the specificity of fluorodinitrobenzene for amino groups in a hydrophobic environment. The amino groups on the minor proteins and on the phospholipids that reacted with fluorodinitrobenzene at pH 6.5 were probably in an aqueous environment, since the reaction was blocked by methyl acetimidate.  相似文献   

12.
A simple method was developed for the controlled cleavage of protein disulfide bonds and the simultaneous blockage of the free sulfhydryl groups in the absence of a denaturant. The disulfide bonds of bovine serum albumin were cleaved unsymmetrically at pH 7.0 using 0.1 M sulfite in 0.1 M phosphate buffer and the free sulfhydryl groups formed were sulfonated in an oxidation-reduction cycle using molecular oxygen and 400 microM cupric sulfate as a catalyst. The reaction was affected by cupric ion concentration, sulfite concentration, reaction pH and temperature. The standardized method was successfully used to cleave the disulfide bonds of other proteins pepsin, trypsin, and chymotrypsin. The method is reliable and can be used for achieving progressive cleavage of disulfide bonds in proteins without employing a denaturant.  相似文献   

13.
A new method is described for the esterification of carboxyl groups in proteins by reaction of the lyophilized protein in vacuo with gaseous alcohol and HCI catalyst. Carboxyl groups are rapidly esterified with no protein degradation. 13C-Methyl or 13C-ethyl esters of the alpha-, gamma- and delta-carboxyl groups could be distinguished by the distinct chemical shifts of their resonances. Within the class of gamma- or delta-esters, the chemical shifts have little variation; however, the chemical shift of a C-terminal esterified alpha-carboxyl group shows a strong dependence on the nature of the C-terminal amino acid and sequence. Iodomethane reacts with deprotonated carboxyl groups in lyophilized proteins to form methyl esters, but unlike the reaction with gaseous methanol/HCI, it does not selectively methylate carboxyl groups. The procedure permits the cost-effective incorporation of isotopic labels and provides a new approach using 13C-NMR spectroscopy for determining the number of different C-termini present in a protein preparation.  相似文献   

14.
Age-related fluorescent and cross-linked proteins increase with lipid oxidation of tissues. The fluorophores and cross-links have been considered to be conjugated Schiff bases between amino groups of proteins and malonaldehyde. Our recent studies showed that the fluorophores produced in the in vitro reaction of proteins with malonaldehyde are 1,4-dihydropyridine-3,5-dicarbaldehydes, whose fluorescence characteristics are similar to but not always the same as those of the age-related fluorescent substances, and that the cross-linking is due to less fluorescent conjugated Schiff bases. The in vitro reaction of proteins with oxidized lipids produces fluorescent and cross-linked proteins similar to those in the aging cells or tissues. Monofunctional aldehydes such as alkanals, alk-2-enals and alka-2,4-dienals can also participate in the formation of the fluorophores and cross-links. The fluorescent substances produced from the reaction of primary amines or proteins with these aldehydes showed spectra close to those of the age-related fluorescent substances.  相似文献   

15.
Pyridoxal-5-phosphate (in a lesser degree, pyridoxal) interacts with both non-protonated and protonated exposed epsilon-amino groups of lysine residues and with alpha-amino groups in human serum albumin and pancreatic ribonuclease A. The reaction of Schiff base formation proceeds within a wide pH range--from 3.0 to 12.0. At a great pyridoxal-5-phosphate excess in ribonuclease A in neutral or slightly acidic aqueous media all the ten epsilon-amino groups of lysine residues and the alpha-amino groups of Lys-1 become modified. The formation of aldimine bonds of pyridoxal-5-phosphate with protonated amino groups in acidic media is determined by ionization of its phenol hydroxyl and phosphate residues. Acetaldehyde, propionic aldehyde and pyridine aldehyde interact only with non-protonated amino groups of the proteins. The equilibrium constants of pyridoxal-5-phosphate and other aldehydes binding to proteins and amino acids were determined. The rate constants of Schiff base formation for pyridoxal-5-phosphates with some amino acids and primary sites of proteins for direct and reverse reactions were calculated.  相似文献   

16.
The use of prepacked capillary columns for immobilizing proteins and peptides for solid-phase Edman degradation is described. Capillary tubes with an internal volume of about 30 microliters are filled with glass beads bearing isothiocyanato groups (DITC-glass), aminophenyl groups (AP-glass), or aminoethylaminopropyl groups (AEAP-glass) and are sealed with porous plugs. Proteins or peptides in appropriate buffers are introduced into the columns by capillary action and are covalently coupled to the glass beads, either by reaction of lysine side-chain amino groups with DITC-glass, by carbodi-imide-mediated reaction of carboxyl groups with AP-glass, or by reaction of homoserine lactone groups with AEAP-glass. Optimization of attachment conditions is described. The capillary columns are loaded into the sequencer and, when sequencing has been completed, are discarded. This technique greatly simplifies polypeptide immobilization and is suitable for microsequencing (less than 50-1000 pmol) or macrosequencing (1-50 nmol).  相似文献   

17.
1. The kinetics of the reaction of 2,4,6-trinitrobenzenesulphonic acid with various amino acids, peptides and proteins were studied by spectrophotometry. 2. The reaction of the α- and -amino groups in simple amino acids was found to be second-order, and the unprotonated amino group was shown to be the reactive species. 3. By allowing for the concentration of unreactive −NH3+ group, intrinsic reactivities for the free amino groups were derived and shown to be correlated with the basicities. 4. The SH group of N-acetylcysteine was found to be more reactive to 2,4,6-trinitrobenzenesulphonic acid than most amino groups. 5. The reactions of insulin, chymotrypsinogen and ribonuclease with 2,4,6-trinitrobenzenesulphonic acid were analysed in terms of three exponential rate curves, each referring to one or more amino groups of the proteins. 6. The reaction of lysozyme with 2,4,6-trinitrobenzenesulphonic acid was found to display an acceleration effect. 7. From the reaction of 2,4,6-trinitrobenzenesulphonic acid with glutamate dehydrogenase at several enzyme concentrations, it was possible to discern two sets of amino groups of different reactivity, and to show that the number of groups in each set was decreased by aggregation of the enzyme.  相似文献   

18.
1. The rate of reaction of mustard gas (H) with thirteen proteins has been determined. The extreme variation in reaction rates is about 100:1. 2. No qualitative difference in the results was observed when the treatment with H was carried out by the Dixon or stirring methods. 3. The kinetics have been analyzed and a bimolecular equation derived which fits the facts. 4. The carboxyl groups of all proteins reacted when the reaction with H was carried out at pH 6.0 in M/25 acetate buffer. In most cases the number of carboxyl groups covered was approximately equal to the number of H residues bound. 5. The amino groups of proteins failed to react with the possible exception of yeast hexokinase. 6. The color obtained when proteins were mixed with Folin''s phenol reagent at pH 8.0 decreased as the protein was treated with H. The color returned on treatment of the H-protein with alkali and many of the combined H groups were hydrolyzed. Similar results were observed when a concentrated glycyltyrosine solution was treated with H.  相似文献   

19.
The oxidative folding of proteins consists of conformational folding and disulfide-bond reactions. These two processes are coupled significantly in folding-coupled regeneration steps, in which a single chemical reaction (the "forward" reaction) converts a conformationally unstable precursor species into a conformationally stable, disulfide-protected successor species. Two limiting-case mechanisms for folding-coupled regeneration steps are described. In the folded-precursor mechanism, the precursor species is preferentially folded at the moment of the forward reaction. The (transient) native structure increases the effective concentrations of the reactive thiol and disulfide groups, thus favoring the forward reaction. By contrast, in the quasi-stochastic mechanism, the forward reaction occurs quasi-stochastically in an unfolded precursor; i.e., reactive groups encounter each other with a probability determined primarily by loop entropy, albeit modified by conformational biases in the unfolded state. The resulting successor species is initially unfolded, and its folding competes with backward chemical reactions to the unfolded precursors. The folded-precursor and quasi-stochastic mechanisms may be distinguished experimentally by the dependence of their kinetics on factors affecting the rates of thiol--disulfide exchange and conformational (un)folding. Experimental data and structural and biochemical arguments suggest that the quasi-stochastic mechanism is more plausible than the folded-precursor mechanism for most proteins.  相似文献   

20.
The enzyme, protein carboxyl-methylase adds methyl groups to the free carboxyl groups of proteins resulting in the neutralization of their negative charges. This reaction may affect both the structure and the function of these proteins. Protein carboxyl-methylation has been implicated in exocytosis and in chemotaxis. The enzymes involved in the turnover of carboxyl-methylated proteins are described and criteria to evaluate the role of these enzymes in exocytosis and chemotaxis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号