首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We have used the human sympathetic neuronal line SH-SY5Y to investigate the effects of hypoxia on noradrenaline (NA) release evoked by either raised [K+]o (100 m M ) or the nicotinic acetylcholine receptor (nAChR) agonist dimethylphenylpiperazinium iodide (DMPP). NA release was monitored by loading cells with [3H]NA and collecting effluent fractions from perfused cells kept in a sealed perifusion chamber. Cells were challenged twice with either stimulus and release was expressed as that evoked by the second challenge as a fraction of that evoked by the first. K+-evoked release was unaffected by hypoxia (P o 2≅ 30–38 mm Hg), but release evoked by DMPP was significantly increased. For both stimuli, replacement of Ca2+o with 1 m M EGTA abolished NA release. K+-evoked release was also dramatically reduced in the presence of 200 µ M Cd2+ to block voltage-gated Ca2+ channels, but DMPP-evoked release was less affected. In hypoxia, DMPP-evoked Cd2+-resistant NA release was dramatically increased. Our findings indicate that hypoxia increases NA release evoked from SH-SY5Y cells in response to nAChR activation by increasing Ca2+ influx through the nAChR pore, or by activating an unidentified Cd2+-resistant Ca2+-influx pathway. As acetylcholine is the endogenous transmitter at sympathetic ganglia, these findings may have important implications for sympathetic activity under hypoxic conditions.  相似文献   

2.
Turgor- dependent membrane permeability in relation to calcium level   总被引:1,自引:0,他引:1  
The relationship between the inhibiting effect of Ca2+ and of low turgor pressure on K+ release from fresh-cut discs of carrot ( Daucus carota var. Nantes) storage tissue was studied. A range of Ca2+ concentrations in the tissue was obtained by adding 0.5 m M EDTA or CaSO4 at different concentrations to the medium. Calcium inhibited K+ release in fully turgid cells (2.5 μmol K+ g−1 h−1 in 0.5 m M EDTA vs 0.4 μmol K+ g−1 h−1 in 10 m M CaSO4). Less turgid cells, obtained by equilibration with 0.2 M mannitol, released K+ at only 30% of the rate of the turgid cells, yet the pattern of K+ release as a function of Ca2+ level was similar in both turgid and non-turgid cells. Removal of calcium by EDTA occasionally injured cell membranes in the fully turgid discs but never in the less turgid ones. In view of the additive effect of Ca2+ and low turgor on K+ release regardless of the treatment order, it is suggested that the two factors exert their effect on membrane permeability independently of each other.  相似文献   

3.
Abstract: The potential involvement of L- and N-type voltage-sensitive calcium (Ca2+) channels and a voltage-independent receptor-operated Ca2+ channel in the release of adenosine from dorsal spinal cord synaptosomes induced by depolarization with K+ and capsaicin was examined. Bay K 8644 (10 n M ) augmented release of adenosine in the presence of a partial depolarization with K+ (addition of 6 m M ) but not capsaicin (1 and 10 μ M ). This augmentation was dose dependent from 1 to 10 n M and was followed by inhibition of release from 30 to 100 n M . Nifedipine and nitrendipine inhibited the augmenting effect of Bay K 8644 in a dose-dependent manner, but neither antagonist had any effect on release of adenosine produced by K+ (24 m M ) or capsaicin (1 and 10 μ M ) ω-Conotoxin inhibited K+-evoked release of adenosine in a dose-dependent manner but had no effect on capsaicin-evoked release. Ruthenium red blocked capsaicin-induced release of adenosine but had no effect on K+-evoked release. Although L-type voltage-sensitive Ca2+ channels can modulate release of adenosine when synaptosomes are partially depolarized with K+, N-type voltage-sensitive Ca2+ channels are primarily involved in K+-evoked release of adenosine. Capsaicin-evoked release of adenosine does not involve either L- or N-type Ca2+ channels, but is dependent on a mechanism that is sensitive to ruthenium red.  相似文献   

4.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

5.
Abstract: The time course of Ca2+-dependent [3H]acetylcholine ([3H]ACh) release and inactivation of 45Ca2+ entry were examined in rat brain synaptosomes depolarized by 45 m M [K+]o. Under conditions where the intrasynaptosomal stores of releasable [3H]ACh were neither exhausted nor replenished in the course of stimulation, the K+-evoked release consisted of a major (40% of the releasable [3H]ACh pool), rapidly terminating phase ( t 1/2 = 17.8 s), and a subsequent, slow efflux that could be detected only during a prolonged, maintained depolarization. The time course of inactivation of K+-stimulated Ca2+ entry suggests the presence of fast-inactivating, slow-inactivating, and noninactivating, or very slowly inactivating, components. The fast-inactivating component of the K+-stimulated Ca2+ entry into synaptosomes appears to be responsible for the rapidly terminating phase of transmitter release during the first 60 s of K+ stimulus. The noninactivating Ca2+ entry may account for the slow phase of transmitter release. These results indicate that under conditions of maintained depolarization of synaptosomes by high [K+]o the time course and the amount of transmitter released may be a function of the kinetics of inactivation of the voltage-dependent Ca channels.  相似文献   

6.
Abstract: A continuous enzyme-linked fluorometric assay was used for determining the characteristics for glutamate exocytosis from guinea-pig cerebrocortical synaptosomes. Ca2+-dependent release can be induced not only by K+, but also by the Na+ channel activator veratridine and the Ca2+ ionophore ionomycin. K+-induced release can be inhibited by the Ca2+ channel inhibitor verapamil. Sr2+ and Ba2+ substitute for Ca2+ in promoting K+-induced release. Agents that would be predicted to transform the transvesicular pH gradient into a membrane potential are without effect on glutamate release. However, the protonophore carbonylcy-anide p -trifluoromethoxyphenylhydrazone causes a time-dependent loss of exocytosis that is oligomycin insensitive and may be due to depletion of vesicular glutamate. The Ca2+-independent release of glutamate from the cytosol on depolarization is unchanged or promoted by metabolic inhibitors that lower the ATP/ADP ratio. In contrast, Ca2+-dependent release is ATP dependent and is blocked by the combined inhibition of oxidative phosphorylation and glycolysis.  相似文献   

7.
Abstract: The temporal resolution of carbon-fiber microelectrodes has been exploited to examine the plasticity of quantal secretory events at individual adrenal medullary cells. The size of individual quantal events, monitored by amperometric oxidation of released catecholamines, was found to be dependent on the extracellular ionic composition, the secretagogue, and the order of depolarization delivery. Release was observed with either exposure to 60 m M K+ in the presence of Ca2+ or exposure to 3 m M Ba2+ in solutions of different pH, with and without external Ca2+. Ba2+ was demonstrated to induce Ca2+-independent exocytotic release for an extended period of time (>4 min) relative to release induced by K+ (∼30 s), which is Ca2+ dependent. In all cases, simultaneous changes of intracellular divalent cations, monitored by fura-2 fluorescence, accompanied quantal release and had a similar time course. Exocytosis caused by Ba2+ in Ca2+-free medium had a larger mean spike area at pH 8.2 than at pH 7.4. When Ba2+-induced spikes measured at pH 7.4 were compared, the spikes in Ca2+-free medium were found to be broader and shorter but had the same area. Release induced by K+ after exposure to Ba2+ was comprised of larger quantal events when compared with preceding K+ stimulations. Finally, spikes obtained with Ba2+ exposure at an extracellular pH of 5.5 had a different shape than those obtained in more basic solutions. These changes in spike size and shape are consistent with the interactions between catecholamines and other intravesicular components.  相似文献   

8.
Abstract: During K+ -induced depolarization of isolated rat brain nerve terminals (synaptosomes), 1 m M Ba2+ could substitute for 1 m M Ca2+ in evoking the release of endogenous glutamate. In addition, Ba2+ was found to evoke glutamate release in the absence of K+-induced depolarization. Ba2+ (1–10 m M ) depolarized synaptosomes, as measured by voltage-sensitive dye fluorescence and [3H]-tetraphenylphosphonium cation distribution. Ba2+ partially inhibited the increase in synaptosomal K+ efflux produced by depolarization, as reflected by the redistribution of radiolabeled 86Rb+. The release evoked by Ba2+ was inhibited by tetrodotoxin (TTX). Using the divalent cation indicator fura-2, cytosolic [Ca2+] increased during stimulation by approximately 200 n M , but cytosolic [Ba2+] increased by more than 1 μ M . Taken together, our results indicate that Ba2+ initially depolarizes synaptosomes most likely by blocking a K+ channel, which then activates TTX-sensitive Na+ channels, causing further depolarization, and finally enters synaptosomes through voltage-sensitive Ca2+channels to evoke neurotransmitter release directly. Though Ba2+-evoked glutamate release was comparable in level to that obtained with K+-induced depolarization in the presence of Ca2+, the apparent intrasynaptosomal level of Ba2+ required for a given amount of glutamate release was found to be several-fold higher than that required of Ca2+.  相似文献   

9.
Abstract— To establish compartments involved in depolarization-induced release of γ-aminobutyric acid (GABA) in rat brain slices, the amount of exogenous labeled and endogenous GABA released and retained was followed during 48 min exposure to 50 m m -K+ or to 50 μ m -veratridine. Endogenous GABA was measured with high performance liquid chromatography. The presence of 10 μ m -aminooxyacetic acid throughout prevented both the metabolism of GABA and the formation of endogenous GABA due to depolarization. During super-fusion with 50 m m -K+ and 2.6 m m -Ca2+ the efflux of labeled and endogenous GABA after an initial large increase declined to 10% of the highest value with constant and identical rates. Kinetic analysis of efflux showed that 10% of endogenous and 25% of labeled GABA present is available for release by high K+ and Ca2+. In the absence of Ca2+, release by high K+ of both labeled and endogenous GABA was nearly suppressed. Veratridine, unlike high K+, caused an efflux which declined with an initial fast and late very slow phase. The slow efflux by veratridine was doubled in the absence of Ca2+. Exposure to veratridine in the absence of Ca2+ during 120 min released nearly 70% of labeled and endogenous GABA present. Results suggest that only about 0.25 μmol g−1 endogenous GABA is the source of physiological Ca2+-dependent release, while much of the remaining GABA present is released only under unphysiological conditions.  相似文献   

10.
Glycine release from Y79 retinoblastoma cells   总被引:3,自引:3,他引:0  
Abstract: Glycine release, induced by a high concentration of potassium chloride (K+), was investigated in cultured human Y79 retinoblastoma cells. The cells were labeled by incubation with [2-3H]glycine prior to K+ depolarization. Depolarization with 55 m M K+ caused an immediate, Ca2+-dependent release of approximately 20% of the cellular radiolabeled glycine content. Chemical analysis of the intracellular free glycine content also showed that approximately 20%, 2.4 nmol/mg protein, was released after K+ depolarization. Glycine release from labeled Y79 cells was not stimulated by incubation with 55 mM choline chloride. Based on measurements with an amino acid analyzer, it is concluded that of the free amino acids contained in the Y79 cell, only glycine is specifically released into the extracellular fluid by K+ depolarization. Although the intracellular content of serine and glutamate decreased, these amino acids were not released from the cells. Further studies with [U-14C]serine suggest that serine is converted into glycine in Y79 cells. Veratridine also caused an immediate release of [2-3H]glycine from the cells, and this was blocked by tetrodotoxin. This suggests that the Y79 cells possess voltage-dependent Na+ channels. These results indicate that K + - and veratridine-stimulated glycine release occurs in Y79 retinoblastoma cells, providing additional evidence that this continuously cultured line may be a useful model for certain human retinal and central nervous system functions.  相似文献   

11.
Abstract: In adrenal chromaffin cells, depolarization-evoked Ca2+ influx and catecholamine release are partially blocked by blockers of L-type voltage-sensitive Ca2+ channels. We have now evaluated the sensitivity of the dihydropyridine-resistant components of Ca2+ influx and catecholamine release to a toxin fraction (FTX) from the funnel-web spider poison, which is known to block P-type channels in mammalian neurons. FTX (1:4,000 dilution, with respect to the original fraction) inhibited K+-depolarization-induced Ca2+ influx by 50%, as monitored with fura-2, whereas nitrendipine (0.1–1 μ M ) and FTX (3:3), a synthetic FTX analogue (1 m M ), blocked the [Ca2+]i transients by 35 and 30%, respectively. When tested together, FTX and nitrendipine reduced the [Ca2+]i transients by 70%. FTX or nitrendipine reduced adrenaline and noradrenaline release by ∼80 and 70%, respectively, but both substances together abolished the K+-evoked catecholamine release, as measured by HPLC. The ω-conotoxin GVIA (0.5 μ M ) was without effect on K+-stimulated 45Ca2+ uptake. Our results indicate that FTX blocks dihydropyridine- and ω-conotoxin-insensitive Ca2+ channels that, together with L-type voltage-sensitive Ca2+ channels, are coupled to catecholamine release.  相似文献   

12.
Abstract: The [Ca2+]1 of cerebellar granule cells can be increased in a biphasic manner by addition of NMDA or by depolarization (induced by elevating the extracellular K+ level), which both activate Ca2+ influx. The possibility that these stimuli activate Ca2+-induced Ca2+ release was investigated using granule cells loaded with fura 2-AM. Dantrolene, perfused onto groups of cells during the sustained plateau phase of the [Ca2+]1 response to K+ or NMDA, was found to reduce the response to both agents in a concentration-dependent manner. Preincubation with thapsigargm (10 μ M ) substantially reduced the plateau phase of the [Ca2+], response to K+ and both the peak and plateau phases of the NMDA response. Preincubation with ryanodine (10 μ M ) also reduced both the K+-evoked plateau response and both phases of the NMDA response. Neither had a consistent effect on the peak response to K+. The effects of thapsigargin and ryanodine on the NMDA response were partially additive. These results demonstrate that in cerebellar granule cells a major component of both K+- and NMDA-induced elevation of [Ca2+]1 appears to be due to release from intracellular stores. The partial additivity of the effects of thapsigargin and ryanodine suggests that these agents affect two overlapping but nonidentical Ca2+ pools.  相似文献   

13.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

14.
Abstract: Differential adrenaline (Ad) and noradrenaline (NA) secretions evoked by secretagogues were investigated using digitonin-permeabilized adrenal chromaffin cells, cultured adrenal chromaffin cells, and perfused adrenal glands of the ox. In digitonin-permeabilized cells, Ca2+ (0.8-160 μM) caused a concentration-dependent increase in catecholamine secretion, which was characterized by a predominance of NA over Ad secretion. Acetylcholine (10-1,000 μM), high K+ (14-56 μM), and bradykinin (0.1-1,000 μM) all were confirmed to induce the release of more NA than Ad at all concentrations used. There was no apparent difference in the ratios of NA/Ad between Ca2+-induced catecholamine secretion from digitonin-permeabilized cells and those induced by secretagogues from cultured cells. Qualitatively the same result was obtained in the secretory responses to acetylcholine and high K+ in perfused adrenal glands. These results indicate that the effectiveness of Ca2+ for catecholamine secretion is higher in the secretory apparatus of NA cells than in that of Ad cells of the bovine adrenal medulla. This may be one of the reasons why the secretagogues cause a predominance of NA secretion over Ad secretion in the bovine adrenal medulla.  相似文献   

15.
Abstract: The uptake of Ca2+ by a K+-depolarized rat brain cerebral cortical crude synaptosomal preparation (P2 fraction) was investigated. The characteristics of the Ca2+ uptake system are similar to those observed by other investigators. The preparation is also a suitable model with which to study the effects of adenosine on Ca2+ uptake and neurotransmitter release, as it is generally accepted that K+-evoked Ca2+ uptake is intimately related to depolarization-induced release of neurotransmitters. We have demonstrated that an extracellular receptor is involved in mediating the adenosine-evoked inhibition of K+-evoked Ca2+ uptake. The pharmacological properties of the receptor suggest that it may be similar in some respects to the A2-receptor associated with adenylate cyclase. The adenosine uptake inhibitor, dipyridamole, potentiated the action of adenosine, suggesting that re-uptake is important in controlling the extracellular adenosine concentration and thus in the regulation of the adenosine receptor. The adenosine receptor antagonist theophylline inhibited the effects of adenosine. Calmodulin inhibited K+- evoked uptake of Ca2+ by the synaptosomal fraction.  相似文献   

16.
Abstract: Under control conditions, superfused slices of the dorsal half of the lumbar enlargement from adult rats released Met-enkephalin-like material (MELM) that behaved as authentic Met-enkephalin under two different chromatographic procedures (Bio-gel filtration, HPLC). MELM release increased markedly on exposure of slices to batrachotoxin (0.5 μ M ) or to an excess of K+ (28 and 56 m M instead of 5.6 m M ). The K + -evoked release was totally dependent on the presence of Ca2+ in the super-fusing fluid whereas the spontaneous efflux of MELM was only partially Ca2+-dependent. Further experiments performed with tissues of polyarthritic rats indicated that the increase in their MELM levels was associated with a lower fractional rate constant of MELM release, therefore suggesting that spinal Met-enkephalin turnover might be reduced in chronically suffering animals. Examination of the possible modulation of MELM release by various neuroactive compounds present within the dorsal horn revealed that cholecystokinin (10 μ M ), but not its desulphated derivative, substance P-sulphoxide (10 μ M ), and to a lesser extent substance P, enhanced the K+-evoked MELM release. In contrast, γ-aminobutyric acid (10 μ M ) and (–)-baclofen (1 μ M ) partially prevented the stimulatory effect of K+ on MELM release. Other compounds such as serotonin, somatostatin, and neurotensin altered neither the spontaneous nor the K+-evoked release of MELM.  相似文献   

17.
Abstract: Following incubation with [14C]y-aminobutyric acid (GABA) or [3H]dopamine, slices of rat striatum were superfused with media containing 36 mM K+ or ethylenediamine (EDA), 1 or 5 mM. Both K+ and EDA induced a release of [14C]GABA, the K+-induced release being largely Ca2+-dependent, while the EDA-induced release was not. Whereas K+ also evoked a Ca2+-dependent release of [3H]dopamine, EDA evoked no release of dopamine. EDA may therefore have potential as a specific GABA releasing agent.  相似文献   

18.
A low fluence of ultraviolet radiation (UV) causes cultured cells of Rosa damascena Mill cv. Gloire de Guilan to lose intracellular K+. This effect required the presence of Ca2+ in the medium. A reduction in the concentration of free Ca2+ to 10−5 M with ethyleneglycol-bis-(β-aminoethyl-ether)-N.N.N',N'-tetraacetic acid (EGTA) buffer inhibited the UV-stimulated efflux; this was correlated with a discharge of the membrane potential and a stimulation of the leakage of K+ from unirradiated cells. All the same effects were seen with La3+ at 0.2 m M. At 0.02 m M La3+, the UV-stimulated efflux of K+ was blocked without concomitant effects on the membrane potential or K+ efflux from control cells. It is suggested that removal of Ca2+ blocks or masks the UV-induced leakage of K+ by destabilizing the plasma membrane. In addition, La3+ may specifically inhibit the UV-stimulated opening of K+ or anion channels.  相似文献   

19.
Abstract: Effects of concanavalin A on transmitter release were investigated in primary cultures of chick sympathetic neurons. The lectin reduced electrically evoked [3H]noradrenaline release by up to 30% with half-maximal inhibition at 0.16 µ M . Concanavalin A also reduced the release triggered by extracellular Ca2+ in neurons depolarized by 25 m M K+ or rendered Ca2+-permeable by the ionophore A23187. The inhibitory action of concanavalin A on electrically evoked release was additive to that of the α2-adrenergic agonist UK 14,304. Inactivation of Gs and Gi/Go type G proteins by either cholera or pertussis toxin did not alter the inhibitory effect of the lectin. Concanavalin A failed to affect the resting membrane potential, action potential waveforms, or voltage-dependent K+ and Ca2+ currents. In contrast, the lectin efficiently blocked both the Ca2+-dependent and -independent α-latrotoxin-induced transmitter release, but only when applied before the toxin. The reduction of electrically evoked, as well as α-latrotoxin-evoked, release by concanavalin A was attenuated in the presence of glucose and abolished by methyl α- d -mannopyranoside. The dimeric derivative, succinyl-concanavalin A, was significantly less active than tetrameric concanavalin A. In bovine adrenal chromaffin cells, which displayed only weak secretory responses to α-latrotoxin, concanavalin A failed to alter K+-evoked catecholamine secretion. These results show that concanavalin A causes presynaptic inhibition in sympathetic neurons and indicate that cross-linking of α-latrotoxin receptors may reduce action potential-dependent transmitter release.  相似文献   

20.
Abstract: Primary cultures of rat cortex, conveniently prepared from newborn animals, were used to study opioid effects on 45Ca2+ uptake and glutamate release. 45Ca2+ uptake, induced by treatment with glutamate or NMDA, was largely blocked by the NMDA antagonist MK-801. K+ depolarization-induced 45Ca2+ uptake was also reduced by MK-801, indicating that the effect was mediated by glutamate release. Direct analysis verified that glutamate, and aspartate, were indeed released. Opioid peptides of the prodynorphin system were also released and these, or other peptides, were functionally active, because naloxone treatment increased glutamate release, as well as the 45Ca2+ uptake induced by depolarization. Opioid agonists, selective for μ-, κ-, and δ-receptors, inhibited the 45Ca2+ uptake induced by K+ depolarization. The combination of low concentrations of MK-801 and opioid agonists resulted in additive inhibition of K+- induced 45Ca2+ uptake. The results indicate that this system may be useful as an in vitro CNS model for studying modulation by opioids of glutamate release and Ca2+ uptake under acute, and perhaps also chronic, opiate treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号