首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Growth in the apical elongation zone of plant roots is central to the development of functional root systems. Rates of root segmental elongation change from accelerating to decelerating as cell development proceeds from newly formed to fully elongated status. One of the primary variables regulating these changes in elongation rates is the extensibility of the elongating cell walls. To help decipher the complex molecular mechanisms involved in spatially variable root growth, we performed a gene identification study along primary root tips of maize (Zea mays) seedlings using suppression subtractive hybridization (SSH) and candidate gene approaches. Using SSH we isolated 150 non-redundant cDNA clones representing root growth-related genes (RGGs) that were preferentially expressed in the elongation zone. Differential expression patterns were revealed by Northern blot analysis for 41 of the identified genes and several candidate genes. Many of the genes have not been previously reported to be involved in root growth processes in maize. Genes were classified into groups based on the predicted function of the encoded proteins: cell wall metabolism, cytoskeleton, general metabolism, signaling and unknown. In-situ hybridization performed for two selected genes, confirmed the spatial distribution of expression shown by Northern blots and revealed subtle differences in tissue localization. Interestingly, spatial profiles of expression for some cell wall related genes appeared to correlate with the profile of accelerating root elongation and changed appropriately under growth-inhibitory water deficit.  相似文献   

4.
5.
Plant cold acclimation is correlated to expression of low-temperature-induced (lti) genes. By using a previously characterized lti cDNA clone as a probe we isolated a genomic fragment that carried two closely located lti genes of Arabidopsis thaliana. The genes were structurally related with the coding regions interrupted by three similarly located short introns and were transcribed in the same direction. The nucleotide sequences of the two genes, lti78 and lti65, predict novel hydrophilic polypeptides with molecular weights of 77856 and 64510, respectively, lti78 corresponding to the cDNA probe. Of the 710 amino acids of LTI78 and 600 amino acids of LTI65, 346 amino acids were identical between the polypeptides, which suggests that the genes may have a common origin.Both lti78 and lti65 were induced by low temperature, exogenous abscisic acid (ABA) and drought, but the responsiveness of the genes to these stimuli was markedly different. Both the levels and the temporal pattern of expression differed between the genes. Expression of lti78 was mainly responsive to low temperature, that of lti65 to drought and ABA. In contrast to the induction of lti78, which follows separate signal pathways during low-temperature, ABA and drought treatment, the drought induction of lti65 is ABA-dependent and the low-temperature induction appears to be coupled to the ABA biosynthetic pathway. This differential expression of two related genes may indicate that they have some-what different roles in the stress response.  相似文献   

6.
7.
8.
To understand how root growth responds to temperature, we used kinematic analysis to quantify division and expansion parameters in the root of Arabidopsis thaliana. Plants were grown at temperatures from 15 to 30 °C, given continuously from germination. Over these temperatures, root length varies more than threefold in the wild type but by only twofold in a double mutant for phytochrome‐interacting factor 4 and 5. For kinematics, the spatial profile of velocity was obtained with new software, Stripflow. We find that 30 °C truncates the elongation zone and curtails cell production, responses that probably reflect the elicitation of a common pathway for handling severe stresses. Curiously, rates of cell division at all temperatures are closely correlated with rates of radial expansion. Between 15 to 25 °C, root growth rate, maximal elemental elongation rate, and final cell length scale positively with temperature whereas the length of the meristem scales negatively. Non‐linear temperature scaling characterizes meristem cell number, time to transit through either meristem or elongation zone, and average cell division rate. Surprisingly, the length of the elongation zone and the total rate of cell production are temperature invariant, constancies that have implications for our understanding of how the underlying cellular processes are integrated.  相似文献   

9.
10.
11.
12.
13.
14.
Three ecotypes of reed (Phragmites communis Trinius), swamp reed (SR), dune reed (DR), and heavy salt meadow reed (HSMR), growing in desert regions of northwest China were simultaneously investigated in their natural state for gas exchange patterns and the expression of three photosynthesis-related genes, cab (the gene for the light-harvesting chlorophyll a/b binding protein, LHC), psbA (the gene for the reaction centre D1 protein of photosystem 2, PS2), and 16S rDNA (the gene for plastid 16S rRNA). Stomatal conductance (gs) and intercellular CO2 concentration (ci) were markedly lower in the two terrestrial ecotypes (DR and HSMR) as compared to SR, paralleling a similar observed depression in net photosynthetic rate (PN). However, DR with the lowest measured gs and ci still exhibited a higher PN compared to HSMR. These results suggest that both stomatal and non-stomatal factors account for the comparatively low carbon assimilation in the terrestrial ecotypes. An increase in the expression of photosynthesis-related genes was observed in DR compared to SR, whereas the reverse situation was true in HSMR. The expression of photosynthesis-related genes may contribute to reed plants' photosynthetic capacity per leaf area under natural water deficits, but the levels of photosynthesis-related gene expression are not directly correlated with reed plants' general ability for survival and adaptation under water deficient conditions.  相似文献   

15.
16.
Overexposure to manganese (Mn) is associated with neurological disorders in children. Evidence indicated that N‐methyl‐d ‐aspartate (NMDA) receptor signaling pathway was critical for neurobehavioral function. However, whether NMDA receptor signaling pathway contributes to Mn‐induced neurotoxicity remains unknown. In this study, newborn Sprague–Dawley rats were randomly assigned to four groups exposed to 0, 10, 20, and 30 mg/kg of Mn2+ by intraperitoneal injection (n = 10/group: five males and five females). After 3 weeks of Mn exposure, messenger RNA (mRNA) and protein expression of NMDA receptor subunits (NR1, NR2A, and NR2B), cAMP‐response element binding protein (CREB), and brain‐derived neurotrophic factor (BDNF) in hippocampus were measured by real‐time quantitative RT‐PCR and Western blot. In Mn‐exposed rats, decreased mRNA and protein expression of NR1, NR2A, and NR2B, CREB, and BDNF was observed. The results imply that downregulated NMDA receptor signaling pathway may be of vital importance in the neuropathological process of Mn‐induced neurotoxicity.  相似文献   

17.
18.
19.
Feng H  Lu LM  Huang Y  Zhu YC  Yao T 《生理学报》2005,57(5):537-544
高浓度的皮质酮可引起海马形态与功能的损伤,其中脑源性神经营养因子(brain-derived neurotrophic factor,BDNF) 表达的改变在海马形态与功能损伤中扮演重要角色。本实验的目的是观察单次皮下注射皮质酮后海马内BDNF-mRNA、前 体蛋白及成熟型蛋白表达的改变,并观察N-甲基-D-天冬氨酸(N-methyl-D-aspartate NMDA)受体阻滞剂MK801对皮质酮 作用的影响。实验结果显示,单次皮下注射皮质酮2 mg/kg,3 h后海马内BDNF mRNA、前体蛋白及成熟型蛋白的表达 均降低;MK801(0.1 mg/kg)对皮质酮的这一作用有增强效果。单独给予皮质酮或注射MK801 30 min后再给予皮质酮, 均能明显降低海马中cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)的磷酸化水平,MK801与 皮质酮联用时CREB的磷酸化水平降低更为显著(与单独给予皮质酮相比,P<0.05)。实验结果提示,CREB磷酸化水平降 低可能是皮质酮引起海马BDNF表达减少的重要中间环节,阻断NMDA受体可加强皮质酮降低BDNF表达的效应。  相似文献   

20.
Typical atrio-ventricular nodal re-entrant tachycardia (AVNRT) can occasionally remain easily inducible after slow pathway (SP) modification in lower Triangle of Koch (TOK). Analysis of resetting response by delivering atrial premature depolarizations (APD) from various sites (TOK, right atrium, coronary sinus and left atrium) can pin-point the culprit SP serving as the antegrade limb of the tachycardia circuit. However, the maneuver is under-utilized by most centers. We describe a case where anatomical SP modification in TOK failed to cure the arrhythmia. The resetting maneuver performed subsequently, helped us to rule out leftward inferior extension of SP and suggested right inferior SP as essential part of AVNRT circuit. Further ablation was performed at M1-M2 region (on the right side) to achieve success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号