首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis of virus-infected cells is one important host strategy used to limit viral infection. Recently a member of the innate immune signaling pathway, MAVS, was localized to mitochondria, an organelle important for apoptosis regulation. Here we investigate what role MAVS may play in apoptosis. Induction of cell death led to the rapid cleavage of MAVS, resulting in its release from the outer mitochondrial membrane. This cleavage is blocked in cells incubated with proteasome or caspase inhibitors. Transfection of synthetic viral dsRNA and dsDNA also led to cleavage of MAVS, indicating that this process may be important during infection. Preventing apoptosis by over-expression of anti-apoptotic Bcl-xL blocks MAVS cleavage, placing this process downstream of caspase activation in the apoptotic program.  相似文献   

2.
3.
The breast cancer susceptibility type 1 gene product (BRCA1) is cleaved by caspases upon the activation of apoptotic pathways. After proteolysis the C-terminal fragment has been reported to translocate to the cytoplasm and promote cell death. Here we report that the C-terminal fragment is unstable in cells as it is targeted for degradation by the N-end rule pathway. The data reveals that mutating the wild type N-terminal aspartate, of the C-terminal fragment, to valine stabilizes the fragment. If the N terminus is mutated to another N-terminal destabilizing residue, like arginine, the C-terminal fragment remains unstable in cells. Last, the C-terminal fragment of BRCA1 is stable in cells lacking ATE1, a component of the N-end rule pathway.  相似文献   

4.
5.
Trichomislin, a novel ribosome-inactivating protein, was cloned from the genome of Trichosanthes kirilowii Maxim. The gene was recombined to prokaryotic expression vector and the protein was purified by cation-exchange chromatography. The secondary structure of trichomislin was measured by circular-dichroism analysis and the ratios of alpha-helices and beta-sheets were calculated. Trichomislin could inhibit the synthesis of protein in rabbit reticulocyte lysate systems and its reaction mechanism was to inactivate ribosome as an rRNA N-glycosidase. Antitumor analyses indicated trichomislin induced the apoptosis and inhibited the growth of choriocarcinoma cells. Further investigation showed that trichomislin could bind to and enter choriocarcinoma cells, and then increase the caspase-3 activity in a time-dependent manner. At the same time, the concentration of cytochrome c in cytosol increased while that in mitochondria decreased. These results suggested that trichomislin induced apoptosis by releasing cytochrome c from mitochondria which then triggered the caspase family member activation.  相似文献   

6.
We previously performed a gene-trap screen in mouse cells with particular focus on clones in which the trapped protein-reporter fusions localise to compartments of the nucleus. Here we describe one such gene-trap line in which the fusion protein showed a unique, patchy distribution at the nuclear periphery. We have cloned the endogenous mouse and human cDNAs encoding the protein trapped in the F9/3D3 cell line. The predicted proteins (64 kDa) encoded by this novel gene are highly conserved and similar to an unpublished rat protein in sequence databases called p80 or lyric. The amino acid sequence of 3D3/lyric indicates that it may be a type-1b membrane protein with a single transmembrane domain (TMD). Antibodies against the endogenous protein recognise multiple isoforms, consistent with multiple 3D3/lyric mRNAs detected by Northern blot analysis. Subcellular fractionation and immunostaining show that 3D3/lyric is located not only principally in the endoplasmic reticulum (ER), but also in the nuclear envelope (NE), which is contiguous with this compartment. Furthermore, 3D3/lyric is also found in the nucleolus and is therefore a rare example of a protein that suggests a possible connection between this compartment and the endoplasmic reticulum.  相似文献   

7.
The Fanconi anemia (FA) pathway, of which the FANCD2 protein is a key component, plays crucial roles in the maintenance of hematopoietic stem cells and suppression of carcinogenesis. However, the function of FANCD2 remains unclear. Here, we report that FANCD2 is a novel and specific substrate of caspase 3. Cleavage of FANCD2 by caspase 3 did not require either the FA core complex or mono-ubiquitylation of FANCD2, and was stimulated by p53. In addition, we identified the cleavage sites and generated cell lines that stably express a caspase-resistant FANCD2 mutant. Our data suggest that FANCD2 is regulated by caspase-mediated degradation during apoptosis induced by DNA damage.  相似文献   

8.
MAGI-1, a member of the MAGUK family of proteins, is shown to be rapidly cleaved during Fas-induced apoptosis in mouse 3T3 A31 cells, and in UV irradiation- and staurosporine-induced apoptosis in HaCaT cells. This generates a 97 kDa N-terminal fragment that dissociates from the cell membrane; a process that is largely prevented in the presence of the caspase inhibitor Z-VAD-fmk. In addition, we show that in vitro translated radiolabelled MAGI-1 is efficiently cleaved into 97 kDa and 68 kDa fragments by caspases-3 and -7 at physiological concentrations and mutating the MAGI-1 Asp761 to Ala completely abolished the caspase-induced cleavage. Moreover, in HaCaT cells overexpressing the MAGI-1 Asp761Ala mutant the disruption of cell-cell contacts was delayed during apoptosis, whereas other caspase-dependent processes such as nuclear condensation were not affected, suggesting that cell detachment is parallel to them. Thus, MAGI-1 cleavage appears to be an important step in the disassembly of cell-cell contacts during apoptosis.  相似文献   

9.
PU.1 is one of key regulators of hematopoietic cell development, a tightly-regulated lineage-specific process. Here we provide the first evidence that PU.1 protein is cleaved into two fragments of 24 kDa and 16 kDa during apoptosis progression in leukemic cell lines and primary leukemic cells. Further experiments with specific capase-3 inhibitor Z-DEVD-fmk and the in vitro proteolytic system confirmed that PU.1 is a direct target of caspase-3. Using site-directed mutagenesis analyses, the aspartic acid residues at positions 97 and 151 of PU.1 protein were identified as capsase-3 target sites. More intriguingly, the suppression of PU.1 expression by small interfering RNAs (siRNAs) significantly inhibits DNA-damaging agents NSC606985 and etoposide-induced apoptosis in leukemic cells, together with the up-regulated expression of anti-apoptotic bcl-2 gene. These results would provide new insights for understanding the mechanism of PU.1 protein in hematopoiesis and leukemogenesis.  相似文献   

10.
Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced by cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53.  相似文献   

11.
Cellular stress induced by nutrient deprivation, hypoxia, and exposure to many chemotherapeutic agents activates an evolutionarily conserved cell survival pathway termed autophagy. This pathway enables cancer cells to undergo self-digestion to generate ATP and other essential biosynthetic molecules to temporarily avoid cell death. Therefore, disruption of autophagy may sensitize cancer cells to cell death and augment chemotherapy-induced apoptosis. Chloroquine and its analog hydroxychloroquine are the only clinically relevant autophagy inhibitors. Because both of these agents induce ocular toxicity, novel inhibitors of autophagy with a better therapeutic index are needed. Here we demonstrate that the small molecule lucanthone inhibits autophagy, induces lysosomal membrane permeabilization, and possesses significantly more potent activity in breast cancer models compared with chloroquine. Exposure to lucanthone resulted in processing and recruitment of microtubule-associated protein 1 light chain 3 (LC3) to autophagosomes, but impaired autophagic degradation as revealed by transmission electron microscopy and the accumulation of p62/SQSTM1. Microarray analysis, qRT-PCR, and immunoblotting determined that lucanthone stimulated a large induction in cathepsin D, which correlated with cell death. Accordingly, knockdown of cathepsin D reduced lucanthone-mediated apoptosis. Subsequent studies using p53(+/+) and p53(-/-) HCT116 cells established that lucanthone induced cathepsin D expression and reduced cancer cell viability independently of p53 status. In addition, lucanthone enhanced the anticancer activity of the histone deacetylase inhibitor vorinostat. Collectively, our results demonstrate that lucanthone is a novel autophagic inhibitor that induces apoptosis via cathepsin D accumulation and enhances vorinostat-mediated cell death in breast cancer models.  相似文献   

12.
Apoptosis plays important roles in host defense, including the elimination of virus-infected cells. The executioners of apoptosis are caspase family proteases. We report that vaccinia virus-encoded F1L protein, previously recognized as anti-apoptotic viral Bcl-2 family protein, is a caspase-9 inhibitor. F1L binds to and specifically inhibits caspase-9, the apical protease in the mitochondrial cell death pathway while failing to inhibit other caspases. In cells, F1L inhibits apoptosis and proteolytic processing of caspases induced by overexpression of caspase-9 but not caspase-8. An N-terminal region of F1L preceding the Bcl-2-like fold accounts for caspase-9 inhibition and significantly contributes to the anti-apoptotic activity of F1L. Viral F1L thus provides the first example of caspase inhibition by a Bcl-2 family member; it functions both as a suppressor of proapoptotic Bcl-2 family proteins and as an inhibitor of caspase-9, thereby neutralizing two sequential steps in the mitochondrial cell death pathway.  相似文献   

13.
Apoptotic breakdown of cellular structures is largely mediated by caspases. One target of degradation is a proteinaceous framework of the nucleus termed the nuclear matrix. We compared the apoptotic changes of the nuclear matrix in staurosporine-treated caspase-3-deficient MCF-7 cells transfected with intact CASP-3 gene (MCF-7c3) or an empty vector (MCF-7v) as a control. Nuclear Mitotic Apparatus protein (NuMA), lamin A/C and lamin B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. In both cell lines, staurosporine induced rapid cytoplasmic shrinkage and partial chromatin condensation. MCF-7c3 cells formed apoptotic bodies, whereas MCF-7v cells did not. NuMA and lamins were actively cleaved in MCF-7c3 cells following caspase-3 activation, but only minimal or no cleavage was detected in MCF-7v cells. Interestingly, lamin B but not lamin A/C was relocated into cytoplasmic granules in apoptotic MCF-7v cells. Pancaspase inhibitor, z-VAD-fmk, prevented the apoptotic changes, while caspase-3 inhibitor, z-DEVD-fmk, induced lamin B granules in both cell lines. These results show that caspase-3 is involved in the cleavage of NuMA and lamins either directly or by activating other proteases. This may be essential for disintegration of the nuclear structure during apoptosis.  相似文献   

14.
15.
Mitochondria play a pivotal role during stress-induced apoptosis as several proapoptotic proteins are released to the cytosol to activate caspases. Smac/DIABLO is one of the proapoptotic proteins released from the mitochondria and has been shown to inactivate IAPs. However, gene knockout studies in mice revealed a redundant role for Smac during development and cell death. By applying RNA interference-mediated loss of function approach, we demonstrate that Smac/DIABLO is required for the activation of effector but not initiator caspases during stress and receptor-mediated cell death in HeLa cells. Cells with reduced Smac resist apoptosis and retained clonogenicity. Our results suggest an obligatory role for Smac/DIABLO in these tumor cells during several pathways of apoptosis induction.  相似文献   

16.
Although early studies of inhibitor of apoptosis proteins (IAPs) suggested that cIAP1 directly binds and inhibits caspases similarly to X-linked IAP (XIAP), a recent one found that micromolar concentrations of cIAP1 only weakly inhibit caspase-3, -7, or -9. Here, we show that cIAP1 specifically and cooperatively blocks the cytochrome c-dependent apoptosome in vitro. Hence, cIAP1 prevented the activation of procaspase-3 but had no effect on the processing of procaspase-9 or the activity of prior activated caspase-3. Like cIAP1, XIAP had no effect on procaspase-9 processing and was a more potent inhibitor of procaspase-3 activation than of already activated caspase-3 activity. Inhibition of procaspase-3 activation depended on BIR2 and BIR3 of cIAP1 and was independent of BIR1, RING, CARD, and UBA domains. Smac prevented cIAP1 from inhibiting procaspase-3 activation and reversed the inhibition by prior addition of cIAP1. A procaspase-9 mutant (D315A) that cannot produce the p12 subunit was resistant to inhibition by cIAP1. Therefore, the N-terminal Ala-Thr-Pro-Phe motif of the p12 subunit of the caspase-9 apoptosome facilitates apoptosome blockade. Consequently, cIAP1 cooperatively interacts with oligomerized processed caspase-9 in the apoptosome and blocks procaspase-3 activation.  相似文献   

17.
18.
Ye B  Yu WP  Thomas GM  Huganir RL 《FEBS letters》2007,581(23):4403-4410
GRASP-1 is a neuronally enriched protein that interacts with the AMPA-type glutamate receptor/GRIP complex. GRASP-1 can be cleaved by Caspase-3 in both normal and ischemic brains although the functional significance of this cleavage remains elusive. We investigated signal transduction pathways that might lie downstream of GRASP-1 and found that GRASP-1 potently activates JNK pathway signaling, with no effect on ERK signaling. Such JNK pathway activating activity requires binding of GRASP-1 to both JNK and the upstream JNK pathway activator MEKK-1. Furthermore, mutations that prevent Caspase 3-cleavage of GRASP-1 dramatically inhibit the JNK pathway activating activity of GRASP-1, suggesting a novel link between Caspase-3 activation and JNK pathway signaling. These results suggest that GRASP-1 serves as a scaffold protein to facilitate MEKK-1 activation of JNK signaling in neurons.  相似文献   

19.
The hordeiviral movement protein encoded by the first gene of the triple gene block (TGBp1) of Poa semilatent virus (PSLV), interacts with viral genomic RNAs to form RNP particles which are considered to be a form of viral genome capable of cell-to-cell and long-distance transport in infected plants. The PSLV TGBp1 contains a C-terminal NTPase/helicase domain (HELD) and an N-terminal extension region consisting of two structurally and functionally distinct domains: an extreme N-terminal domain (NTD) and an internal domain (ID). This study demonstrates that transient expression of TGBp1 fused to GFP in Nicotiana benthamiana leaves results in faint but obvious fluorescence in the nucleolus in addition to cytosolic distribution. Mutagenesis of the basic amino acids inside the NTD clusters A 116KSKRKKKNKK125 and B 175KKATKKESKKQTK187 reveals that these clusters are indispensable for nuclear and nucleolar targeting of PSLV TGBp1 and may contain nuclear and nucleolar localization signals or their elements. The PSLV TGBp1 is able to bind to fibrillarin, the major nucleolar protein (AtFib2 from Arabidopsis thaliana) in vitro. This protein–protein interaction occurs between the glycine-arginine-rich (GAR) domain of fibrillarin and the first 82 amino acid residues of TGBp1. The interaction of TGBp1 with fibrillarin is also visualized in vivo by bimolecular fluorescence complementation (BiFC) during co-expression of TGBp1 or its deletion mutants, and fibrillarin as fusions to different halves of YFP in N. benthamiana plants. The sites responsible for nuclear/nucleolar localization and fibrillarin binding, have been located within the intrinsically disordered TGBp1 NTD. These data could suggest that specific functions of hordeivirus TGBp1 may depend on its interaction with nucleolar components.  相似文献   

20.
The BH3-only proapoptotic protein, BAD, was cloned from zebrafish embryos and its properties were characterized. Zebrafish BAD (zBAD) is a protein with 147 amino acids that contains a BH3 domain and a putative 14-3-3 binding site with the sequence of RPRSRS(84)AP, corresponding to S(136) in mouse BAD (mBAD). zBAD shares 34%, 28%, and 29% amino acid sequence identity to the human, mouse, and rat BAD, respectively. RT-PCR analysis revealed that the expression of zBAD gene is found in various parts of zebrafish tissues. The treatment with the z-VAD fmk, a broad-range caspase inhibitor, in COS-1 cells significantly increased the expression of zebrafish BAD fusion proteins (GFP-zBAD and HA-zBAD), indicating that zebrafish BAD fusion proteins may be cleaved by caspase(s). zBAD was shown to induce apoptosis when it was overexpressed in COS-1 cells. In addition, zBAD was also expressed in muscle cells under the muscle-specific promoter from zebrafish alpha-actin gene. Abnormality in the skeletal muscles and the loss of green fluorescence signal in the same region were observed. Taken together, our results indicate that zBAD could induce apoptosis in vitro and in vivo and may have biological implications in apoptosis during zebrafish development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号