首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of exercise on maximal instantaneous muscular power of humans   总被引:2,自引:0,他引:2  
The maximal instantaneous anaerobic power (w), as determined during a high jump off both feet on a force platform, was measured on eight subjects starting from a resting base line; a base line of steady-state cycloergometric exercise requiring 30, 50, and 70% of individual maximum O2 consumption (VO2max); and a base line of maximal and supramaximal exercise (100 and 120% of VO2max). In addition, w was also measured during the VO2 transients from rest to each of the above work loads. Blood lactate concentration ([Lab]) was determined before and 8 min after the end of each priming load. After the onset of any priming load, w decreases with time reaching in 2 min a steady level that is lower the higher the VO2. For the three lowest work rates, the steady w level is unchanged by increasing the duration of the priming exercise up to 30 min. For low work levels, the decrease of w as a function of VO2 is essentially parallel to that of estimated muscle concentration of ATP ([ATP]). For work levels greater than 60% of VO2max involving a substantial accumulation of lactate, the decrease of w becomes smaller than the estimated drop of muscle [ATP]. This finding is tentatively attributed to an increase of either the mechanical equivalent or of the velocity constant of ATP splitting brought about by the lowering of intracellular muscle pH after lactate accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The mechanical power (Wtot, W·kg–1) developed during ten revolutions of all-out periods of cycle ergometer exercise (4–9 s) was measured every 5–6 min in six subjects from rest or from a baseline of constant aerobic exercise [50%–80% of maximal oxygen uptake (VO2max)] of 20–40 min duration. The oxygen uptake [VO2 (W·kg–1, 1 ml O2 = 20.9 J)] and venous blood lactate concentration ([la]b, mM) were also measured every 15 s and 2 min, respectively. During the first all-out period, Wtot decreased linearly with the intensity of the priming exercise (Wtot = 11.9–0.25·VO2). After the first all-out period (i greater than 5–6 min), and if the exercise intensity was less than 60% VO2max, Wtot, VO2 and [la]b remained constant until the end of the exercise. For exercise intensities greater than 60% VO2max, VO2 and [la]b showed continuous upward drifts and Wtot continued decreasing. Under these conditions, the rate of decrease of Wtot was linearly related to the rate of increase of V [(d Wtot/dt) (W·kg–1·s–1) = 5.0·10–5 –0.20·(d VO2/dt) (W·kg–1·s–1)] and this was linearly related to the rate of increase of [la]b [(d VO2/dt) (W·kg–1·s–1) = 2.310–4 + 5.910–5·(d [la]b/dt) (mM·s–1)]. These findings would suggest that the decrease of Wtot during the first all-out period was due to the decay of phosphocreatine concentration in the exercising muscles occurring at the onset of exercise and the slow drifts of VO2 (upwards) and of Wtot (downwards) during intense exercise at constant Wtot could be attributed to the continuous accumulation of lactate in the blood (and in the working muscles).  相似文献   

3.
The present study aimed at analysing the age-related decline in maximal muscle power () in 52 sedentary healthy women aged between 50 and 75 years to determine whether force or velocity is the major determinant. Maximal muscle power was estimated from two types of vertical jumps, squatting (SJ) and counter‐movement (CmJ), performed on a force platform. It was obtained by measuring the vertical force (F opt) applied to the body centre of gravity and calculating the corresponding vertical velocity ( opt). An age-related decline in absolute was statistically significant in all the conditions examined and in both peak and average power () values. The decrease in opt was also statistically significant. Also Fopt declined but this reduction was not statistically significant with the exception of the average value in CmJ. Not surprisingly the highest were obtained in CmJ, and the difference in power production between the two types of jump showed an age-related decrement only in . The main finding of the study was the demonstration that opt was the critical determinant of the age-related decline in in healthy elderly women. Accepted: 8 December 1997  相似文献   

4.
Maximal instantaneous muscular power after prolonged bed rest in humans.   总被引:1,自引:0,他引:1  
A reduction in lower limb cross-sectional area (CSA) occurs after bed rest (BR). This should lead to an equivalent reduction in maximal instantaneous muscular power (W(p)) if the body segments' lengths remain unchanged. W(p) was determined during maximal jumps off both feet on a force platform before and on days 2, 6, 10, 32, and 48 after a 42-day duration BR. CSA of thigh muscles was measured by magnetic resonance imaging before and on day 5 after BR. Before BR, W(p) was 3.63 +/- 0.43 kW or 48.6 +/- 3.3 W/kg. On days 2 and 6 after BR, W(p) was reduced by 23.7 +/- 6.9 and 22.7 +/- 5.4% (P < 0.01), respectively. Thigh extensors CSA (CSAEXT) was 16.7 +/- 4.7% (P < 0.01) lower than before. When normalized per CSAEXT, W(p) was reduced by only 4.8 +/- 4.5% (P < 0.05). By day 48 of recovery, W(p) had returned to baseline values. Therefore, if W(p) is appropriately normalized for CSA of the extensor muscles, the reduction in CSAEXT explains most of the decrease in W(p) decrease after BR. Other factors such as a deficit in neural activation or a decrease in fiber-specific tension may account for only 5% of the W(p) loss after BR.  相似文献   

5.
6.
The maximal power of the lower limbs was determined in fourastronauts (age 37-53 yr) 1)during maximal pushes of ~250 ms on force platforms["maximal explosive power" (MEP)] or2) during all-out bouts of 6-7s on an isokinetic cycloergometer [pedal frequency 1 Hz: maximalcycling power (MCP)]. The measurements were done before andimmediately after spaceflights of 31-180 days. Before flight, peakand mean values were 3.18 ± 0.38 and 1.5 ± 0.13 (SD)kW for MEP and 1.17 ± 0.12 and 0.68 ± 0.08 kW for MCP,respectively. After reentry, MEP was reduced to 67% after 31 days andto 45% after 180 days. MCP decreased less, attaining ~75% ofpreflight level, regardless of the flight duration. The recovery of MCPwas essentially complete 2 wk after reentry, whereas that of MEP wasslower, a complete recovery occurring after an estimated time close tothat spent in flight. In the same subjects, the muscle mass of thelower limbs, as assessed by NMR, decreased by 9-13%, irrespectiveof flight duration (J. Zange, K. Müller, M. Schuber, H. Wackerhage, U. Hoffmann, R. W. Günther, G. Adam, J. M. Neuerburg,V. E. Sinitsyn, A. O. Bacharev, and O. I. Belichenko. Int. J. Sports Med. 18, Suppl. 4: S308-S309, 1997). Thelarger fall in maximal power, compared with that in muscle mass,suggests that a fraction of the former (especially relevant for MEP) is due to the effects of weightlessness on the motor unit recruitment pattern.

  相似文献   

7.
The effect of changing muscle temperature on performance of short term dynamic exercise in man was studied. Four subjects performed 20 s maximal sprint efforts at a constant pedalling rate of 95 crank rev.min-1 on an isokinetic cycle ergometer under four temperature conditions: from rest at room temperature; and following 45 min of leg immersion in water baths at 44; 18; and 12 degrees C. Muscle temperature (Tm) at 3 cm depth was respectively 36.6, 39.3, 31.9 and 29.0 degrees C. After warming the legs in a 44 degrees C water bath there was an increase of approximately 11% in maximal peak force and power (PPmax) compared with normal rest while cooling the legs in 18 and 12 degrees C water baths resulted in reductions of approximately 12% and 21% respectively. Associated with an increased maximal peak power at higher Tm was an increased rate of fatigue. Two subjects performed isokinetic cycling at three different pedalling rates (54, 95 and 140 rev.min-1) demonstrating that the magnitude of the temperature effect was velocity dependent: At the slowest pedalling rate the effect of warming the muscle was to increase PPmax by approximately 2% per degree C but at the highest speed this increased to approximately 10% per degree C.  相似文献   

8.
Abdominal muscle fatigue after maximal ventilation in humans   总被引:4,自引:0,他引:4  
Kyroussis, Dimitris, Gary H. Mills, Michael I. Polkey,Carl-Hugo Hamnegard, Nicholaos Koulouris, Malcolm Green, and John Moxham. Abdominal muscle fatigue after maximal ventilation inhumans. J. Appl. Physiol. 81(4):1477-1483, 1996.Abdominal muscles are the principal muscles ofactive expiration. To investigate the possibility of abdominal musclelow-frequency fatigue after maximal ventilation in humans, westimulated the nerve roots supplying the abdominal muscles. We used amagnetic stimulator (Magstim 200) powering a 90-mm circular coil andstudied six normal subjects. To assess the optimum level of stimulationand posture, we stimulated at each intervertebral level betweenT7 andL1 in the prone, supine, andseated positions. At T10, we usedincreasing power outputs to assess the pressure-power relationship.Care was taken to avoid muscle potentiation. Twitch gastric pressure(Pga) was recorded with a balloon-tipped catheter. Mean (±SD)baseline twitch Pga measured with the subjects in the prone position atT10 was 23.5 ± 5.4 cmH2O. Within-occasion mean twitchPga coefficient of variation was 4.6 ± 1.1%. Twitch Pga wasmeasured with the subjects in the prone position with stimulation overT10 before and after 2 min ofmaximal isocapnic ventilation (MIV). Twenty minutes after MIV, meantwitch Pga fell by 17 ± 9.1%(P = 0.03) and remained low 90 minafter MIV. We conclude that after maximal ventilation in humans thereis a reduction of twitch Pga and, therefore, of low-frequency fatiguein abdominal muscles.

  相似文献   

9.
The effect of fatigue as a result of a standard submaximal dynamic exercise on maximal short-term power output generated at different contraction velocities was studied in humans. Six subjects performed 25-s maximal efforts on an isokinetic cycle ergometer at five different pedaling rates (60, 75, 90, 105, and 120 rpm). Measurements of maximal power output were made under control conditions [after 6 min of cycling at 30% maximal O2 uptake (VO2max)] and after fatiguing exercise that consisted of 6 min of cycling at 90% VO2max with a pedaling rate of 90 rpm. Compared with control values, maximal peak power measured after fatiguing exercise was significantly reduced by 23 +/- 19, 28 +/- 11, and 25 +/- 11% at pedaling rates of 90, 105, and 120 rpm, respectively. Reductions in maximum peak power of 11 +/- 8 and 14 +/- 8% at 60 and 75 rpm, respectively, were not significant. The rate of decline in peak power during the 25-s control measurement was least at 60 rpm (5.1 +/- 2.3 W/s) and greatest at 120 rpm (26.3 +/- 13.9 W/s). After fatiguing exercise, the rate of decline in peak power at pedaling rates of 105 and 120 rpm decreased significantly from 21.5 +/- 9.0 and 26.3 +/- 13.9 W/s to 10.0 +/- 7.3 and 13.3 +/- 6.9 W/s, respectively. These experiments indicate that fatigue induced by submaximal dynamic exercise results in a velocity-dependent effect on muscle power. It is suggested that the reduced maximal power at the higher velocities was due to a selective effect of fatigue on the faster fatigue-sensitive fibers of the active muscle mass.  相似文献   

10.
Effect of prior exercise on maximal short-term power output in humans   总被引:1,自引:0,他引:1  
The effect of prior exercise (PE) on subsequent maximal short-term power output (STPO) was examined during cycling exercise on an isokinetic ergometer. In the first series of experiments the duration of PE at a power output equivalent to 98% maximum O2 uptake (VO2max) was varied between 0.5 and 6 min before measurement of maximal STPO. As PE duration increased subsequent STPO fell to approximately 70% of control values after 3-6 min. In series ii the effect of varying the intensity of PE of fixed 6-min duration was studied in five subjects. After PE less than 60% VO2max there was an increase of 12% in STPO, but after greater than 60% VO2max there was a progressive fall in STPO as PE intensity increased, indicating a reduction of approximately 35% at 100% VO2max compared with control values. In series iii we examined the effect on STPO of allowing a recovery period after a fixed intensity (mean = 87% VO2max) of 6 min PE before measurement of STPO. This indicated a rapid recovery of dynamic function with a half time of approximately 32 s, which is similar to the kinetics of PC resynthesis and taken with the other findings suggests the dominant role that PC exerts on the STPO under these conditions.  相似文献   

11.
Somatosympathetic reflexes were studied in young hyperinsulinemic, insulin-resistant (Zucker fatty) rats (ZFR) and a related control (Zucker lean) strain (ZLR). Glucose metabolism was characterized by minimal model analysis of intravenous glucose tolerance test data. Seven-week-old ZFR (n=18) and ZLR (n=17) were studied under pentobarbital anesthesia. Mean body weight and plasma glucose and insulin concentration were significantly greater (P<0.05) in ZFR than in ZLR, whereas basal values of mean arterial pressure (MAP) and heart rate (HR) were not significantly different. Increments of MAP (DeltaMAP) and HR (DeltaHR) elicited by electrical stimulation of the sciatic nerve (5-s trains of 100 pulses, 0.5-ms pulse duration, 100- to 400-microA pulse intensity) were significantly higher (ANOVA, P<0.05) in ZFR at each level of stimulus intensity. Regression analysis showed a linear increase in DeltaMAP and DeltaHR with increasing sciatic nerve stimulus intensity. Pressor responses to phenylephrine after ganglionic blockade demonstrated that vascular reactivity to adrenergic stimulation is not increased in ZFR compared with ZLR. Thus this factor does not contribute to enhancement of somatosympathetic reflexes observed in this strain. Insulin sensitivity in ZFR was one-fourth (P<0.05) that in ZLR. These results suggest that stronger sympathetic nervous reactivity in ZFR is associated with a severe insulin-resistant state before the onset of hypertension and support the hypothesis that insulin-mediated stimulation of the sympathetic nervous system is involved in the development of cardiovascular diseases related to alterations of glucose metabolism.  相似文献   

12.
Brief episodes of nonlethal ischemia, commonly known as "ischemic preconditioning" (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (W(max)), oxygen uptake (VO(2max)), and pulmonary ventilation (VE(max)) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HR(max)), stroke volume (SV(max)), and cardiac output (CO(max)). A subgroup of volunteers (n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, W(max), VE(max), and HR(max) with respect to the REF test. In particular, W(max) increased by ~ 4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO(2max), SV(max,) CO(max), and anaerobic capacity(.) It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.  相似文献   

13.
We examined the effects of lung volume on the bronchoconstriction induced by inhaled aerosolized methacholine (MCh) in seven normal subjects. We constructed dose-response curves to MCh, using measurements of inspiratory pulmonary resistance (RL) during tidal breathing at functional residual capacity (FRC) and after a change in end-expiratory lung volume (EEV) to either FRC -0.5 liter (n = 5) or FRC +0.5 liter (n = 2). Aerosols of MCh were generated using a nebulizer with an output of 0.12 ml/min and administered for 2 min in progressively doubling concentrations from 1 to 256 mg/ml. After MCh, RL rose from a base-line value of 2.1 +/- 0.3 cmH2O. 1-1 X s (mean +/- SE; n = 7) to a maximum of 13.9 +/- 1.8. In five of the seven subjects a plateau response to MCh was obtained at FRC. There was no correlation between the concentration of MCh required to double RL and the maximum value of RL. The dose-response relationship to MCh was markedly altered by changing lung volume. The bronchoconstrictor response was enhanced at FRC - 0.5 liter; RL reached a maximum of 39.0 +/- 4.0 cmH2O X 1-1 X s. Conversely, at FRC + 0.5 liter the maximum value of RL was reduced in both subjects from 8.2 and 16.6 to 6.0 and 7.7 cmH2O X 1-1 X s, respectively. We conclude that lung volume is a major determinant of the bronchoconstrictor response to MCh in normal subjects. We suggest that changes in lung volume act to alter the forces of interdependence between airways and parenchyma that oppose airway smooth muscle contraction.  相似文献   

14.
15.
16.
17.
18.
The purpose of this study was to find the optimal values of design parameters for a bicycle-rider system (crank length, pelvic inclination, seat height, and rate of crank rotation) which maximize the power output from muscles of the human lower limb during bicycling. The human lower limb was modelled as a planar system of five rigid bodies connected by four smooth pin joints and driven by seven functional muscle groups. The muscles were assumed to behave according to an adapted form of Hill's equation. The dependence of the average power on the design parameters was examined. The instantaneous power of each muscle group was studied and simultaneous activity of two seemingly antagonistic muscle groups was analyzed. Average peak power for one full pedal revolution was found to be around 1100 W. The upper body position corresponding to this peak power output was slightly reclined, and the pedalling rate was 155 rpm for a nominal crank length of 170 mm.  相似文献   

19.
Several types of work tasks are used to assess maximal aerobic power (MAP) in humans. Although it is well established that these work tasks may yield different absolute MAP values, little is known about the extent of the specificity of each MAP work task. 30 moderately active young men were tested at random for MAP with five commonly used work tasks: cycling supine, cycling sitting, alternate arm cranking standing, walking on a treadmill, and stepping on a bench. Statistical analyses show that these five tests do not give equal MAP means, equal variances or equal covariances. Various correlation techniques indicate, furthermore, that the common variance between the five aerobic power measurements is at best moderate. It was estimated that the overall common variance for Max ml O2 . kg-1 . min-1 reached about 50% of the total variance. The most efficient linear loading of each test in the first principal component could account only for 75% of the observed variance in MAP. It is concluded that these five work tasks do not yield parallel test forms, that the practice of transforming one MAP value into another should be abandoned, and that the practice of generalizing from one MAP value to a theoretical general MAP of the human body is not justified.  相似文献   

20.
The effects of 12 weeks of a low-intensity general conditioning programme on maximal instantaneous peak power (Wpeak) and maximal oxygen uptake (VO2max) were examined in 20 elderly women. After medical, familiarisation, and ethical procedures, the subjects were randomly divided into either a training and or a control group. The training group [n = 11; mean (SD) age 63.0 (3.1) years] agreed to take part in a 12-week training programme at an exercise intensity kept under 60% of the heart rate reserve for about 60 min, 3 times a week. The control group [n = 9; mean (SD) age 63.5 (3.3) years] did not perform any particular physical training. Before and after the training period, all participants underwent anthropometric measures and a maximal cycling test to exhaustion to measure their VO2max. In addition, Wpeak was determined 1 week later by the subjects performing a vertical jump from a squatting position on a force platform. Following training, neither the anthropometric characteristics nor the VO2max changed in either of the groups. In contrast, Wpeak increased significantly (P < 0.001) in the training group, but did not change in the control group. This result could be interpreted as the result of an improved level of neuromuscular activation. Furthermore, it shows that although muscle power declines with age at a faster rate than does aerobic power, its sensitivity to training seems to be higher than that of the aerobic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号