首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sophorose metabolism and cellulase induction in Trichoderma   总被引:6,自引:0,他引:6  
The cellulase inducer sophorose was rapidly catabolized to CO2 and H2O by Trichoderma: only small amounts were used to induce the synthesis of cellulase. 3H-sophorose uptake began after a lag of 1 h and its half-life in the medium was less than 5 h. Cellulase activity in the medium did not increase till 6 h after the addition of sophorose and reached a half maximum value at 14 h. The presence of free sophorose in the medium was required for continuous cellulase production. Several small sophorose addition induced much more cellulase than an equivalent single dose. These results are attributed to two pathways of sophorose utilization, a catabolic pathway that has a high capacity but low affinity for sophorose and an inductive pathway having a lower capacity but higher affinity for sophorose.  相似文献   

2.
In an attempt to clarify the function of lactose in cellulase induction, experiments were carried out on cellulase formation by lactose along with other sugars in a resting cell system of Trichoderma reesei PC-3-7, a hypercellulase-producing mutant. Although lactose alone induces little cellulase under the conditions used, a synergistic effect on cellulase formation was observed following the respective addition of sophorose, cellobiose or galactose to lactose. The lactose consumption was more rapid when these sugars were added than in their absence. Furthermore, following lactose addition 10 h after the beginning of cultivation in the presence of cellobiose, cellulase formation was initiated with only a little lag, and lactose consumption started immediately, being complete in 14 h. \-Galactosidase induction experiments suggested that the rapid consumption of lactose is possibly not dependent on lactose degradation by the enzyme. From these results, it is suggested that lactose may function as an inducer for cellulase formation if it is taken up in the mycelium of T. reesei PC-3-7, and that sophorose, cellobiose or galactose may induce a putative lactose permease. *** DIRECT SUPPORT *** AG903066 00005  相似文献   

3.
《Experimental mycology》1990,14(4):405-415
The relationship between β-linked disaccharide (cellobiose, sophorose) utilization and cellulase, particularly cellobiohydrolase I (CBH I) synthesis by Trichoderma reesei, was investigated. During growth on cellobiose and sophorose as carbon sources in batch as well as resting-cell culture, only sophorose induced cellulase formation. In the latter experiments, sophorose was utilized at a much lower rate than cellobiose, and the more cellulase produced, the lower its rate of utilization. Cellobiose and sophorose were utilized by the fungus mainly via hydrolysis by the cell wall- and cell membrane-bound β-glucosidase. Addition of sophorose to T. reesei growing on cellulose did not further stimulate cellulase synthesis, and addition of cellobiose was inhibitory. Cellobiose, however, promoted cellulase formation in both batch and resting cell cultures, when its hydrolysis by β-glucosidase was inhibited by nojirimycin. No cellulase formation was observed when the uptake of glucose (produced from cellobiose by β-glucosidase) was inhibited by 3-O-methylglucoside. Cellodextrins (C2 to C6) promoted formation of low levels of cellobiohydrolase I in indirect proportion to their rate of hydrolysis by β-glucosidase. Studies on the uptake of [3H]cellobiose, [3H]sophorose, and [14C]glucose in the presence of inhibitors of β-glucosidase (nojirimycin) and glucose transport (3-O-methylglucoside) show that glucose transport occurs at a much higher rate than disaccharide hydrolysis. Extracellular disaccharide hydrolysis accounts for at least 95% of their metabolism. The presence of an uptake system for cellobiose was established by demonstrating the presence of intracellular labeled [3H]cellobiose in T. reesei after its extracellular supply. The data are consistent with induction of cellulase and particularly CBH I formation in T. reesei by β-linked disaccharides under conditions where their uptake is favored at the expense of extracellular hydrolysis.  相似文献   

4.
Addition of L-sorbose, a non-metabolizable non-inducing ketohexose, toTrichoderma reesei cultures growing on cellobiose or Avicel-cellulose lead to increased cellulase activities. Addition of sorbose resulted in a 6-fold increase in cellodextrins (cellotriose, cellotetraose, cellopentaose) concentration on day 3 in cellobiose cultures and 1.3-fold increase in cellodextrins concentrations on day 4 in Avicel cellulose cultures. This increase in intracellular cellodextrins concentration matched closely with the increase in endoglucanase activity at these time points. Treatment of the cell-free extracts with cellulase preparation led to disappearance of the cellodextrins and increase of glucose. These observations suggested a more direct involvement of cellodextrins in cellulase induction process. The cellulases produced in sorbose-supplemented cellobiose medium hydrolyzed microcrystalline cellulose as effectively as the ones produced on Avicel cellulose medium.  相似文献   

5.
The gene encoding β-glucosidase of the marine hyperthermophilic eubacterium Thermotoga neapolitana (bglA) was subcloned and expressed in Escherichia coli. The recombinant BglA (rBglA) was efficiently purified by heat treatment at 75°C, and a Ni-NTA affinity chromatography and its molecular mass were determined to be 56.2 kDa by mass spectrometry (MS). At 100°C, the enzyme showed more than 94% of its optimal activity. The half-life of the enzyme was 3.6 h and 12 min at 100 and 105°C, respectively. rBglA was active toward artificial (p-nitrophenyl β-d-glucoside) and natural substrates (cellobiose and lactose). The enzyme also exhibited activity with positional isomers of cellobiose: sophorose, laminaribiose, and gentiobiose. Kinetic studies of the enzyme revealed that the enzyme showed biphasic behavior with p-nitrophenyl β-d-glucoside as the substrate. Whereas metal ions did not show any significant effect on its activity, dithiothreitol and β-mercaptoethanol markedly increased enzymatic activity. When arbutin and cellobiose were used as an acceptor and a donor, respectively, three distinct intermolecular transfer products were found by thin-layer chromatography and recycling preparative high-performance liquid chromatography. Structural analysis of three arbutin transfer products by MS and nuclear magnetic resonance indicated that glucose from cellobiose was transferred to the C-3, C-4, and C-6 in the glucose unit of acceptor, respectively.  相似文献   

6.
Summary From cellulose and cellobiose the formation of sophorose, laminaribiose, and gentiobiose was catalyzed byTrichoderma reesei culture filtrate containing exo- and endoglucanase and -glucosidase activity and from cellobiose by a broken cell suspension fromT.reesei with -glucosidase activity. The results indicate that -glucosidase is the component responsible for transglycosylation reaction catalyzed byT.reesei cellulase enzyme complex.  相似文献   

7.
A new intracellular beta-glucosidase was isolated from Trichoderma reesei. It was sequentially purified by (NH4)2SO4 precipitation and chromatography and rechromatography on Sephadex G-150. The enzyme has a mol.wt. of 98 000, optimal activity at pH 6.5, pI 4.4 and Km values of 6.7 mM and 3.3 mM for sophorose and cellobiose respectively. Possible functions of the enzyme may be regulation of cellulase induction and/or to serve as a proenzyme.  相似文献   

8.
Summary The nucleotide sequence of a 2.314 kb DNA segment containing a gene (cedl) expressing cellodextrinase activity from Butyrivibrio fibrisolvens H17c was determined. The B. fibrisolvens H17c gene was expressed from a weak internal promoter in Escherichia coli and a putative consensus promoter sequence was identified upstream of a ribosome binding site and a GTG start codon. The complete amino acid sequence (547 residues) was deduced and homology was demonstrated with the Clostridium thermocellum endoglucanase D (EGD), Pseudomonas fluorescens var. cellulose endoglucanase (EG), and a cellulase from the avocado fruit (Persea americana). The ced1 gene product Cedl showed cellodextrinase activity and rapidly hydrolysed short-chain cellodextrins to yield either cellobiose or cellobiose and glucose as end products. The Cedl enzyme released cellobiose from p-nitrophenyl--d-cellobioside and the enzyme was not inhibited by methylcellulose, an inhibitor of endoglucanase activity. Although the major activity of the Cedl enzyme was that of a cellodextrinase it also showed limited activity against endoglucanase specific substrates [carboxymethylcellulose (CMC), lichenan, laminarin and xylan]. Analysis by SDS-polyacrylamide gel electrophoresis with incorporated CMC showed a major activity band with an apparent M r of approximately 61000. The calculated M r of the ced1 gene product was 61023.Abbreviations Ap ampicillin - ced1 gene coding for Ced1 - Ced1 cellodextrinase from B. fibrisolvens - CMC carboxymethylcellulose - LB Luria Bertani - ORF open reading frame - pNPC p-nitrophenyl--d-cellobioside - PC phosphate citrate - HCA hydrophobic cluster analysis  相似文献   

9.
This paper describes the characterization of an intracellular beta-glucosidase enzyme BGLII (Cel1a) and its gene (bgl2) from the cellulolytic fungus Trichoderma reesei (Hypocrea jecorina). The expression pattern of bgl2 is similar to that of other cellulase genes known from this fungus, and the gene would appear to be under the control of carbon catabolite repression mediated by the cre1 gene. The BGLII protein was produced in Escherichia coli, and its enzymatic properties were analyzed. It was shown to be a specific beta-glucosidase, having no beta-galactosidase side activity. It hydrolyzed both cellotriose and cellotetraose. BGLII exhibited transglycosylation activity, producing mainly cellotriose from cellobiose and sophorose and cellobiose from glucose. Antibodies raised against BGLII showed the presence of the enzyme in T. reesei cell lysates but not in the culture supernatant. Activity measurements and Western blot analysis of T. reesei strains expressing bgl2 from a constitutive promoter further confirmed the intracellular localization of this beta-glucosidase.  相似文献   

10.
β-Glucosidase is frequently used to supplement cellulase preparations for hydrolysis of cellulosic and lignocellulosic substrates in order to accelerate the conversion of cellobiose to glucose. Typically, commercial cellulase preparations are deficient in this enzyme and accumulation of cellobiose leads to product inhibition. This study evaluates the potential for recycling β-glucosidase by immobilization on a methacrylamide polymer carrier, Eupergit C. The immobilized β-glucosidase had improved stability at 65 °C, relative to the free enzyme, while the profile of activity versus pH was unchanged. Immobilization resulted in an increase in the apparent Km from 1.1 to 11 mm and an increase in Vmax from 296 to 2430 μmol mg−1 min−1. The effect of immobilized β-glucosidase on the hydrolysis of cellulosic and lignocellulosic substrates was comparable to that of the free enzyme when used at the same level of protein. Operational stability of the immobilized β-glucosidase was demonstrated during six rounds of lignocellulose hydrolysis. Received 22 August 2005; Revisions requested 20 September 2005; Revisions received 8 November 2005; Accepted 10 November 2005  相似文献   

11.
Strains of Trichoderma, particularly T. reesei and its mutants, are good sources of extracellular cellulase suitable for practical saccharification. They secrete a complete cellulase complex containing endo- and exo-glucanases plus β-glucosidase (cellobiase) which act syngergistically to degrade totally even highly resistant crystalline cellulose to soluble sugars. All strains investigated to date are inducible by cellulose, lactose, or sophorose, and all are repressible by glucose. Induction, synthesis and secretion of the β-glucanase enzymes appear to be closely associated. The composition and properties of the enzyme complex are similar regardless of the strain or inducing substrate although quantities of the enzyme secreted by the mutants are higher. Enzyme yields are proportional to initial cellulose concentration. Up to 15 filter paper cellulase units (20 mg of cellulase protein) per ml and productivities up to 80 cellulase units (130 mg cellulase protein) per litre per hour have been attained on 6% cellulose. The economics of glucose production are not yet competitive due to the low specific activity of cellulase (0.6 filter paper cellulase units/mg protein) and poor efficiency (about 15% of predicted sugar levels in 24 h hydrolyses of 10–25% substrate). As hydrolysis proceeds, the enzyme reaction slows due to increasing resistance of the residue, product inhibition, and enzyme inactivation. These problems are being attacked by use of pretreatments to increase the quantity of amorphous cellulose, addition of β-glucosidase to reduce cellobiose inhibition, and studies of means to overcome instability and increase efficiency of the cellulases. Indications are that carbon compounds derived from enzymatic hydrolysis of cellulose will be used as fermentation and chemical feedstocks as soon as the process economics are favourable for such application.  相似文献   

12.
13.
14.
Summary A new cellulase gene was cloned and expressed inEscherichia coli from a thermophilic anaerobe, strain NA10. A 7.4 kbEcoRI fragment of NA10 DNA encoded the cellulase which hydrolyzed carboxymethyl cellulose, lichenan, andp-nitrophenyl--d-cellobioside, but could not digest laminarin andp-nitrophenyl--d-glucoside. The cloned enzyme could digest cellooligosaccharides and release cellobiose as a main product from cellotetraose but could not digest cellobiose. It was distinct from the endoglucanase which was cloned by us previously from NA10 strain in terms ofp-nitrophenyl--d-cellobioside degradation activity and the location of restriction enzyme sites. The enzyme produced byE. coli transformant was extremely heat-stable and the optimum temperature for the enzymatic reaction was 80°C. Fifty three percent of the cloned enzyme was detected in the periplasm and the remaining activity existed in the cellular fraction in theE. coli transformant.  相似文献   

15.
Derepressed synthesis of cellulase by Cellulomonas.   总被引:15,自引:4,他引:11       下载免费PDF全文
A Cellulomonas sp. was isolated from the soil which hydrolyzed cellulose, as shown by clear-zone formation on cellulose agar medium. Catabolite repression of cellulase synthesis occurred when moderate levels of glucose were added to the medium. A stable mutant that no longer exhibits catabolite repression was produced through treatment of the wild-type organism with N-methyl-N'-nitro-N-nitrosoguanidine. Both enzyme concentration and specific activity, as determined by the rate of hydrolysis of carboxymethylcellulose, were greater with the mutant than with the wild-type organism under various test conditions. The wild type had no measurable cellulase activity when grown in the presence of either 1.0% glucose or cellobiose. Cellobiose, but not glucose, inhibited enzyme activity towards both cellulose and carboxymethylcellulose. Cellobiose, cellulose, and sophorose at low concentrations induced cellulase synthesis in both the wild-type and the mutant organism. Cellulase regulation appears to depend upon a complex relationship involving catabolite repression, inhibition, and induction.  相似文献   

16.
Summary Of fungi 110 strains were screened for extracellular cellulase production in shake flask experiments. Twelve strains produced the enzyme in significant quantity. Since the enzyme activity was assayed by different methods (liberation of reducing sugar from cotton, filter paper, carboxymethylcellulose and cellobiose), the estimation of the productivity of the strains differed according to the substrate used. The best cotton degrading activity per fermentation volume as well as per mg of secreted soluble protein was achieved by Penicillium verruculosum WA 30, a wild-type strain, for which the cellulase productivity has not yet been published. The cotton degrading (so-called C1) activity was successfully enhanced nearly threefold in medium experiments. Analyses of saccharification digests showed that glucose was the predominant product, with negligible amounts of cellobiose. The pH and temperature optima for WA 30 cellulase complex were pH 4.2 and 60°C.  相似文献   

17.
The bacterial strain Paenibacillus xylanilyticus KJ-03 was isolated from a sample of soil used for cultivating Amorphophallus konjac. The cellulase gene, cel5A was cloned using fosmid library and expressed in Escherichia coli BL21 (trxB). The cel5A gene consists of a 1,743 bp open reading frame and encodes 581 amino acids of a protein. Cel5A contains N-terminal signal peptide, a catalytic domain of glycosyl hydrolase family 5, and DUF291 domain with unknown function. The recombinant cellulase was purified by Ni-affinity chromatography. The cellulase activity of Cel5A was detected in clear band with a molecular weight of 64 kDa by zymogram active staining. The maximum activity of the purified enzyme was displayed at a temperature of 40 °C and pH 6.0 when carboxymethyl cellulose was used as a substrate. It has 44% of its maximum activity at 70 °C and retained 66% of its original activity at 45 °C for 1 h. The purified cellulase hydrolyzed avicel, CMC, filter paper, xylan, and 4-methylumbelliferyl β-d-cellobiose, but no activity was detected against p-nitrophenyl β-d-glucoside. The end products of the hydrolysis of cellotetraose and cellopentaose by Cel5A were detected by thin layer chromatography, while enzyme did not hydrolyze cellobiose and cellotriose.  相似文献   

18.
This paper describes the characterization of an intracellular β-glucosidase enzyme BGLII (Cel1a) and its gene (bgl2) from the cellulolytic fungus Trichoderma reesei (Hypocrea jecorina). The expression pattern of bgl2 is similar to that of other cellulase genes known from this fungus, and the gene would appear to be under the control of carbon catabolite repression mediated by the cre1 gene. The BGLII protein was produced in Escherichia coli, and its enzymatic properties were analyzed. It was shown to be a specific β-glucosidase, having no β-galactosidase side activity. It hydrolyzed both cellotriose and cellotetraose. BGLII exhibited transglycosylation activity, producing mainly cellotriose from cellobiose and sophorose and cellobiose from glucose. Antibodies raised against BGLII showed the presence of the enzyme in T. reesei cell lysates but not in the culture supernatant. Activity measurements and Western blot analysis of T. reesei strains expressing bgl2 from a constitutive promoter further confirmed the intracellular localization of this β-glucosidase.  相似文献   

19.
The production of sugars by enzymatic hydrolysis of cellulose is a multistep process which includes conversion of the intermediate cellobiose to glucose by β-glucosidase. Aside from its role as an intermediate, cellobiose inhibits the endoglucanase components of typical cellulase enzyme systems. Because these enzyme systems often contain insufficient concentrations of β-glucosidase to prevent accumulation of inhibitory cellobiose, this research investigated the use of supplemental immobilized β-glucosidase to increase yield of glucose. Immobilized β-glucosidase from Aspergillus phoenicis was produced by sorption at controlled-pore alumina with about 90% activity retention. The product lost only about 10% of the original activity during an on-stream reaction period of 500 hr with cellobiose as substrate; maximum activity occurred near pH 3.5 and the apparent activation energy was about 11 kcal/mol. The immobilized β-glucosidase was used together with Trichoderma reesei cellulase to hydrolyze cellulosic materials, such as Solka Floc, corn stove and exploded wood. Increased yields of glucose and greater conversions of cellobiose of glucose were observed when the reaction systems contained supplemental immobilized β-glucosidase.  相似文献   

20.
Summary A commercial preparation of cellulase was immobilized on CNBr-sepharose, ConA-sepharose, and CNBr-glass beads. When filter paper was used as the substrate, the specific activity of the enzyme immobilized on ConA-sepharose was more than twice that of the soluble enzyme, while the activity of the enzymes immobilized on the other two substrates was either very slightly (CNBr-sepharose) or slightly (CNBr-glass beads) reduced. The immobilized enzymes showed alterations both in the Km and V max values: these were generally either slightly increased (Km) or reduced (V max). In addition, the immobilized enzymes were more resistant to inhibition both by glucose and cellobiose, they were all more stable than the soluble enzyme and solubilized three different natural lignocellulosic materials (alfa-alfa, wheat straw, and pine needles) to a much greater or significantly greater extext than the soluble enzyme: the ConA-sepharose cellulase was the most efficient. The possibility of reusing the immobilized enzyme was also tested. It was found that the ConA-sepharose cellulase could be reused five times with a final loss of activity that ranged between 30% and 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号