首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Migratory raptors rarely fly over stretches of water larger than 25 km, although different species undertake water crossings of varying lengths, depending mainly on their wing morphology. Oriental Honey‐buzzards fly c. 680 km over the East China Sea in autumn from breeding areas in Japan to wintering areas in Southeast Asia, but avoid this long water crossing in spring. We investigated the effects of weather on this exceptional migratory behaviour and its seasonality through a maximum entropy niche modelling approach. We used data collected through satellite tracking of 31 adult birds as presence points and a set of variables related to wind, precipitation and convective condition as environmental predictors. Results of modelling showed very different, almost non‐overlapping, areas suitable for migration over the East China Sea region in autumn and spring. Suitable migration routes in autumn mostly occurred over the sea, whereas suitable areas for spring migration mostly occurred over land, suggesting that circumnavigating the East China Sea is preferable in spring. At the regional scale, wind conditions facilitate water‐crossing behaviour of Oriental Honey‐buzzards in autumn, but not in spring. Specifically, suitable tailwinds over the sea enable water‐crossing in autumn, whereas in spring, wind support and convective conditions are best over land. Our modelling did not suggest any importance of convective conditions for autumn migration. However, we expect that at smaller temporal scales, convective conditions would be a considerable facilitator of the water‐crossing behaviour in this species.  相似文献   

2.
We describe the detoured migration route of the Oriental honey-buzzard Pernis ptilorhyncus , showing differences between autumn and spring migration, using data from 10 adult individuals marked with satellite transmitters. In autumn, the migration routes were very similar from Japan to the south end of the Malay Peninsula. The wintering sites were distributed within the Philippines, Borneo and the Malay Archipelago. During autumn, migration of the birds had few long-term stopover sites, instead, sometimes decidedly slowing their migration rate while proceeding in a consistent direction. During spring migration, the honey-buzzards penetrated into southern China, moving north to the base of the Korean Peninsula. The birds then went south through the Korean Peninsula to reach Japan. Before travelling to China, all spring migrants stopped for several weeks in south-east Asia. The slow rate of travel in the autumn suggests that migrants were foraging and replenishing their energy reserves. Instead of a migration strategy that uses only a few long-term stopover sites, honey-buzzards may adopt a strategy based on a number of short-term stay sites.  相似文献   

3.
Migrating animals should optimise time and energy use when migrating, travelling directly to their destination. Detours from the most direct route may arise however because of barriers and weather conditions. Identifying how such situations arise from variable weather conditions is crucial to understand population response in the light of increased anthropogenic climate change. Here we used light-level geolocators to follow Cyprus wheatears for their full annual cycle in two separate years migrating between Cyprus, over the Mediterranean and the Sahara to winter in north–east sub-Saharan Africa. We predicted that any route detours would be related to wind conditions experienced during migration. We found that spring migration for all birds included an eastern detour, whilst autumn migrations were direct across the Sahara. The direct autumn migration was likely a consequence of consistent tail-winds, whilst the eastern detour in spring is likely to be more efficient given the wind conditions which are against a direct route. Such variable migration routes shaped by coincidence with prevailing winds are probably common suggesting that some birds may be able to adapt to future changes in wind conditions.  相似文献   

4.
Routes of migrating soaring birds   总被引:1,自引:0,他引:1  
YOSSI LESHEM  YORAM YOM-TOV 《Ibis》1998,140(1):41-52
Soaring migrants travelling through Israel use three principal routes which are used in the opposite directions during the spring and autumn: (1) the Western Route lies mainly along the western edge of the central mountain range, (2) the Eastern Route lies mainly along the Jordan Valley, crossing the mountain range during part of the day, continuing southward along the Dead Sea towards the Sinai, and joining the Western Route in autumn and (3) the Southern-Elat Mountains Route. The geomorphological structure of Israel, with a central mountain range dividing the country roughly into three landscape units, plays a central role in route selection. In the autumn, the Western Route migration axis is deflected at the beginning of the day from east to west for 10–25 km, depending on weather conditions and the flock's roosting locations. Between 10.00 h and 11.00 h, the daily breeze blowing from the Mediterranean Sea influences the migration axis, which is slowly deflected back to the east. A parallel deflection of the migration axis occurs in the Eastern Route in the autumn. The route moves southwest over the eastern slopes of the central mountain range during the morning hours and over the slope, which absorbs direct radiation from the sun, creating good soaring conditions. Towards late afternoon, when the breeze from the sea starts, the axis is deflected to the east, to the Jordan Valley. In the Elat Mountains, the wind flow plays a similar role, but because the topography of the southern Arava Valley causes a change in wind direction, the axis moves during the day in a north-south direction. In addition to the axis movement on a daily scale, a seasonal deflection of the migration axis from east to west also exists. During autumn migration, early migrants (e.g. White Storks Ciconia ciconia) tend to travel on an eastern route, while late migrants (e.g. White Pelican Pelecanus onocrotalus) travel along the Mediterranean coast. This fluctuation was probably because of sub-optimal soaring conditions along the coastal plain during August. In September, temperature differences between the sea and land decrease and the influence of the marine inversion gradually declines, until its influence disappears completely in October. A comparison of the numbers of soaring birds seen over Israel in the autumn and spring shows significant seasonal differences in the use of the various routes. For example, only one species, the Steppe Eagle Aquila nipalensis, flies over the Elat Mountains in the autumn, compared to more than 30 species in the spring. In the autumn, White Storks pass over only along the Jordan Valley axis, whereas in the spring, about half the migrating storks also pass over the western edge of the central mountain range. Honey Buzzards Pernis apivorus fly along the Western Route in large numbers in the autumn, while concentrating almost totally over the Elat Mountains in the spring. These differences are related to the global migration routes between the breeding and the wintering grounds in relation to the Red Sea, which birds avoid crossing, thus causing them to follow different routes in autumn, and spring.  相似文献   

5.
An important issue in migration research is how small‐bodied passerines pass over vast geographical barriers; in European–African avian migration, these are represented by the Mediterranean Sea and the Sahara Desert. Eastern (passing eastern Mediterranean), central (passing Apennine Peninsula) and western (via western Mediterranean) major migration flyways are distinguished for European migratory birds. The autumn and spring migration routes may differ (loop migration) and there could be a certain level of individual flexibility in how individuals navigate themselves during a single migration cycle. We used light‐level loggers to map migration routes of barn swallows Hirundo rustica breeding in the centre of a wide putative contact zone between the northeastern and southernwestern European populations that differ in migration flyways utilised and wintering grounds. Our data documented high variation in migration patterns and wintering sites of tracked birds (n = 19 individuals) from a single breeding colony, with evidence for loop migration in all but one of the tracked swallows. In general, two migratory strategies were distinguished. In the first, birds wintering in a belt stretching from southcentral to southern Africa that used an eastern route for both the spring and autumn migration, then shifted their spring migration eastwards (anti‐clockwise loops, n = 12). In the second, birds used an eastern or central route to their wintering grounds in central Africa, shifting the spring migration route westward (clockwise loops, n = 7). In addition, we observed an extremely wide clockwise loop migration encompassing the entire Mediterranean, with one individual utilising both the eastern (autumn) and western (spring) migratory flyway during a single annual migration cycle. Further investigation is needed to ascertain whether clockwise migratory loops encircling the entire Mediterranean also occur other small long‐distance passerine species.  相似文献   

6.
Departure and stopover decisions are crucial for a successful migration. Such decisions are modulated by a complex interplay between endogenous (physiological state) and external factors, such as weather (e.g. wind) and geography (ecological barriers). In this study of the black redstart Phoenicurus ochruros, a short‐distance migrant passerine, we investigate the effect of weather, as gauged by tailwind and crosswind conditions, rainfall, temperature, and barometric pressure, on departures from a stopover site in the central Mediterranean Sea, off the western coast of Italy (Ventotene island), during both spring and autumn migration. We found that stopover duration was longer in birds arriving with lower fat stores, and that birds departed with generally favourable weather conditions (favourable tailwinds, weak or no crosswinds, low rainfall, high temperatures, and high pressure). However, the effects of weather on departure decisions were stronger in autumn: this could be related to 1) a seasonal difference in selection pressures for early arrival at the goal areas, that are expected to be stronger in spring than in autumn or 2) a difference in the residual extent of sea crossing since, in autumn, birds are confronted with a much longer non‐stop sea crossing (at least 300 km) than in spring (~50 km). In spring we also found males to leave the study site under less favourable tailwinds than females, and adults to leave with more favourable tailwinds than young. Our findings indicate that departure decisions are flexible and differently affected by weather in different seasons, either because of seasonal effects or because of different distances to be covered before reaching the next stopover site. Moreover, our study suggests that sex‐specific weather selectivity should be regarded among the proximate factors affecting differential spring migration of either sex.  相似文献   

7.
The current Northern Hemisphere migration systems are believed to have arisen since the last glaciation. In many cases, birds do not migrate strait from breeding to non‐breeding areas but fly via a detour. All western European populations of red‐backed shrikes Lanius collurio are assumed to reach their southern African wintering grounds detouring via southeast Europe. Based on theoretical considerations under an optimality framework this detour is apparently optimal. Here, we use individual geolocator data on red‐backed shrikes breeding in Spain to show that these birds do indeed detour via southeast Europe en route to southern Africa where they join other European populations of red‐backed shrikes and return via a similar route in spring. Disregarding potential wind assistance, the routes taken for the tracked birds in autumn were not optimal compared to crossing the barrier directly. For spring migration the situation was quite different with the detour apparently being optimal. However, when considering potential wind assistance estimated total air distances during autumn migration were overall similar and the barrier crossing shorter along the observed routes. We conclude that considering the potential benefit of wind assistance makes the route via southeast Europe likely to be less risky in autumn. However, it cannot be ruled out that other factors, such as following a historical colonisation route could still be important.  相似文献   

8.
《Animal behaviour》1988,36(3):865-876
The orientation of robins captured during autumn and spring migration at two different sites, Falsterbo and Ottenby, in southern Sweden was investigated by cage experiments during the twilight period after sunset. The robins were tested under clear skies with skylight from sunset visible, and under simulated total overcast. The robins from the two sites differed in orientation, especially during autumn migration. While robins from Ottenby generally oriented in their expected migratory direction, the birds from Falsterbo under clear skies oriented towards the sunset direction with a narrow scatter in individual mean headings. Under simulated total overcast the robins from Falsterbo perferred northerly directions in autumn. Short-distance recoveries, one or only a few days after ringing, show that robins in autumn regularly fly 20–80 km from Falsterbo on northerly courses, indicating that they have temporarily reoriented from their normal migratory direction when confronted with the Baltic Sea. In contrast, most robins arrive at Ottenby by extensive flights across the Baltic Sea, and rapidly continue their sea crossing in the normal migratory directions. Mean fat deposits in autumn robins were significantly larger at Ottenby than at Falsterbo. These results indicate that migrating birds may show markedly different orientational dispositions depending on body condition and on their situation with respect to preceding and impending migration over land and sea, respectively.  相似文献   

9.
Migration detours, the spatial deviation from the shortest route, are a widespread phenomenon in migratory species, especially if barriers must be crossed. Moving longer distances causes additional efforts in energy and time, and to be adaptive, this should be counterbalanced by favorable condition en route. We compared migration patterns of nightingales that travelled along different flyways from their European breeding sites to the African nonbreeding sites. We tested for deviations from shortest routes and related the observed and expected routes to the habitat availability at ground during autumn and spring migration. All individuals flew detours of varying extent. Detours were largest and seasonally consistent in western flyway birds, whereas birds on the central and eastern flyways showed less detours during autumn migration, but large detours during spring migration (eastern flyway birds). Neither migration durations nor the time of arrival at destination were related to the lengths of detours. Arrival at the breeding site was nearly synchronous in birds flying different detours. Flying detours increased the potential availability of suitable broad‐scale habitats en route only along the western flyway. Habitat availability on observed routes remained similar or even decreased for individuals flying detours on the central or the eastern flyway as compared to shortest routes. Thus, broad‐scale habitat distribution may partially explain detour performance, but the weak detour‐habitat association along central and eastern flyways suggests that other factors shape detour extent regionally. Prime candidate factors are the distribution of small suitable habitat patches at local scale as well as winds specific for the region and altitude.  相似文献   

10.
Many populations of long‐distance migrants are declining and there is increasing evidence that declines may be caused by factors operating outside the breeding season. Among the four vulture species breeding in the western Palaearctic, the species showing the steepest population decline, the Egyptian Vulture Neophron percnopterus, is a long‐distance migrant wintering in Africa. However, the flyways and wintering areas of the species are only known for some populations, and without knowledge of where mortality occurs, effective conservation management is not possible. We tracked 19 juvenile Egyptian Vultures from the declining breeding population on the Balkan Peninsula between 2010 and 2014 to estimate survival and identify important migratory routes and wintering areas for this species. Mortality during the first autumn migration was high (monthly survival probability 0.75) but mortality during migration was exclusively associated with suboptimal navigation. All birds from western breeding areas and three birds from central and eastern breeding areas attempted to fly south over the Mediterranean Sea, but only one in 10 birds survived this route, probably due to stronger tailwind. All eight birds using the migratory route via Turkey and the Middle East successfully completed their first autumn migration. Of 14 individual and environmental variables examined to explain why juvenile birds did or did not successfully complete their first migration, the natal origin of the bird was the most influential. We speculate that in a declining population with fewer experienced adults, an increasing proportion of juvenile birds are forced to migrate without conspecific guidance, leading to high mortality as a consequence of following sub‐optimal migratory routes. Juvenile Egyptian Vultures wintered across a vast range of the Sahel and eastern Africa, and had large movement ranges with core use areas at intermediate elevations in savannah, cropland or desert. Two birds were shot in Africa, where several significant threats exist for vultures at continental scales. Given the broad distribution of the birds and threats, effective conservation in Africa will be challenging and will require long‐term investment. We recommend that in the short term, more efficient conservation could target narrow migration corridors in southern Turkey and the Middle East, and known congregation sites in African wintering areas.  相似文献   

11.
Loop migration among birds is characterized by the spring route lying consistently west or east of the autumn route. The existence of loops has been explained by general wind conditions or seasonal differences in habitat distribution. Loop migration has predominantly been studied at the population level, for example by analysing ring recoveries. Here we study loop migration of individual marsh harriers Circus aeruginosus tracked by satellite telemetry. We show that despite a generally narrow migration corridor the harriers travelled in a distinct clockwise loop through Africa and southern Europe, following more westerly routes in spring than in autumn. We used the Normalized Difference Vegetation Index (NDVI) to identify potential feeding habitat in Africa. Suitable habitat seemed always more abundant along the western route, both in spring and autumn, and no important stopover site was found along the eastern route. Observed routes did thus not coincide with seasonal variation in habitat availability. However, favourable habitat might be more important during spring migration, when the crossing of the Sahara seems more challenging, and thus habitat availability might play an indirect role in the harriers’ route choice. Grid‐based wind data were used to reconstruct general wind patterns, and in qualitative agreement with the observed loop marsh harriers predominantly encountered westerly winds in Europe and easterly winds in Africa, both in autumn and in spring. By correlating tail‐ and crosswinds with forward and perpendicular movement rates, respectively, we show that marsh harriers are partially drifted by wind. Thus, we tentatively conclude that wind rather than habitat seems to have an overriding effect on the shape of the migration routes of marsh harriers. General wind conditions seem to play an important role also in the evolution of narrow migratory loops as demonstrated for individual marsh harriers.  相似文献   

12.
According to migration theory and several empirical studies, long‐distance migrants are more time‐limited during spring migration and should therefore migrate faster in spring than in autumn. Competition for the best breeding sites is supposed to be the main driver, but timing of migration is often also influenced by environmental factors such as food availability and wind conditions. Using GPS tags, we tracked 65 greater white‐fronted geese Anser albifrons migrating between western Europe and the Russian Arctic during spring and autumn migration over six different years. Contrary to theory, our birds took considerably longer for spring migration (83 days) than autumn migration (42 days). This difference in duration was mainly determined by time spent at stopovers. Timing and space use during migration suggest that the birds were using different strategies in the two seasons: In spring they spread out in a wide front to acquire extra energy stores in many successive stopover sites (to fuel capital breeding), which is in accordance with previous results that white‐fronted geese follow the green wave of spring growth. In autumn they filled up their stores close to the breeding grounds and waited for supportive wind conditions to quickly move to their wintering grounds. Selection for supportive winds was stronger in autumn, when general wind conditions were less favourable than in spring, leading to similar flight speeds in the two seasons. In combination with less stopover time in autumn this led to faster autumn than spring migration. White‐fronted geese thus differ from theory that spring migration is faster than autumn migration. We expect our findings of different decision rules between the two migratory seasons to apply more generally, in particular in large birds in which capital breeding is common, and in birds that meet other environmental conditions along their migration route in autumn than in spring.  相似文献   

13.
Dunlin migration in northeast Italy is described. An attempt to identify the main routes and staging areas used by birds wintering in the central Mediterranean is presented. The results of monthly counts from 1990–1995 revealed that the bulk of the population occupied the wintering area in October and left for the breeding grounds in April and May. The analysis of 342 Italian recoveries of foreign ringed birds showed that 65% were ringed during post-breeding migration through the Baltic Sea, whereas just a few birds had been ringed in western Europe. First-year birds arrived in autumn with a single migratory wave, peaking in October. Two categories of adults were identified during post-breeding migration: birds which directly reached Italian wintering sites and birds which arrived after they had suspended their migration for moulting: the Azov/Black Sea wetlands are suggested as possible moulting areas. Out of 2444 adults and 1627 first-years ringed between 1989 and 1996 at our study area, we obtained a total of 42 recoveries abroad and evidence of direct links between Azov/Black Sea and N Adriatic wetlands, both during autumn and spring migrations. Primary moult was observed only in adults arriving early, the second migratory wave being composed of moulted birds. Locally moulting adults adopted a moult strategy characterized by high raggedness scores, typical of resident moulters. Body mass was not affected by primary moult stage or intensity, winter mass values being reached two weeks after the average date of primary moult completion.  相似文献   

14.
The relation between wind, latitude and daily migration speed along the entire migration route of white storks was analysed. Mean daily migration speed was calculated using satellite telemetry data for autumn and spring migration of white storks from their breeding grounds in Germany and Poland to wintering grounds in Africa and back. The National Center for Environmental Prediction (NCEP) reanalysis data were used to systematically fit 850 mb wind vectors to daily migration speed along the migration route. White storks migrated significantly faster and had a shorter migration season in autumn (10 km/h) compared to spring (6.4 km/h). In autumn mean daily migration speed was significantly slower in Europe (8.0 km/h) than in the Middle East (11.1 km/h) and Africa (11.0 km/h). In spring mean daily migration speed was significantly faster in Africa (10.5 km/h) as birds left their wintering grounds than in the Middle East (4.3 km/h). Migration speed then increased in Europe (6.5 km/h) as birds approached their breeding grounds. In both spring and autumn tailwind (at 850mb) and latitude were found to be significant variables related to daily migration speed.  相似文献   

15.
Many migratory bird species have undergone recent population declines, but there is considerable variation in trends between species and between populations employing different migratory routes. Understanding species-specific migratory behaviours is therefore of critical importance for their conservation. The Common Sandpiper Actitis hypoleucos is an Afro-Palaearctic migratory bird species whose European populations are in decline. We fitted geolocators to individuals breeding in England or wintering in Senegal to determine their migration routes and breeding or non-breeding locations. We used these geolocator data in combination with previously published data from Scottish breeding birds to determine the distributions and migratory connectivity of breeding (English and Scottish) and wintering (Senegalese) populations of the Common Sandpiper, and used simulated random migrations to investigate wind assistance during autumn and spring migration. We revealed that the Common Sandpipers tagged in England spent the winter in West Africa, and that at least some birds wintering in Senegal bred in Scandinavia; this provides insights into the links between European breeding populations and their wintering grounds. Furthermore, birds tagged in England, Scotland and Senegal overlapped considerably in their migration routes and wintering locations, meaning that local breeding populations could be buffered against habitat change, but susceptible to large-scale environmental changes. These findings also suggest that contrasting population trends in England and Scotland are unlikely to be the result of population-specific migration routes and wintering regions. Finally, we found that birds used wind to facilitate their migration in autumn, but less so in spring, when the wind costs associated with their migrations were higher than expected at random. This was despite the wind costs of simulated migrations being significantly lower in spring than in autumn. Indeed, theory suggests that individuals are under greater time pressures in spring than in autumn because of the time constraints associated with reproduction.  相似文献   

16.
Migration is costly in terms of time, energy and safety. Optimal migration theory suggests that individual migratory birds will choose between these three costs depending on their motivation and available resources. To test hypotheses about use of migratory strategies by large soaring birds, we used GPS telemetry to track 18 adult, 13 sub‐adult and 15 juvenile Golden Eagles Aquila chrysaetos in eastern North America. Each age‐class had potentially different motivations during migration. During spring, the migratory performance (defined here as the directness of migratory flight) of adults was higher than that of any other age‐classes. Adults also departed earlier and spent less time migrating. Together, these patterns suggest that adults were primarily time‐limited and the other two age‐classes were energy‐limited. However, adults that migrated the longest distances during spring also appeared to take advantage of energy‐conservation strategies such as decreasing their compensation for wind drift. During autumn, birds of all age‐classes were primarily energy‐minimizers; they increased the length of stopovers, flew less direct routes and migrated at a slower pace than during spring. Nonetheless, birds that departed later in autumn flew more directly, indicating that time limitations may have affected their decision‐making. During both seasons, juveniles had the lowest performance, sub‐adults intermediate performance and adults the highest performance. Our results show age‐ and seasonal variation in time and energy‐minimization strategies that are not necessarily exclusive of one another. Beyond time and energy, a complex suite of factors, including weather, experience and navigation ability, influences migratory performance and decision‐making.  相似文献   

17.
Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover‐to‐passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south‐eastern US, the most prominent corridor for North America’s migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.  相似文献   

18.
Migration is fundamental in the life of many birds and entails significant energetic and time investments. Given the importance of arrival time in the breeding area and the relatively short period available to reproduce (particularly at high latitudes), it is expected that birds reduce spring migration duration to a greater extent than autumn migration, assuming that pressure to arrive into the wintering area might be relaxed. This has previously been shown for several avian groups, but recent evidence from four tracked Icelandic whimbrels Numenius phaeopus islandicus, a long distance migratory wader, suggests that this subspecies tends to migrate faster in autumn than in spring. Here, we 1) investigate differences in seasonal migration duration, migration speed and ground speed of whimbrels using 56 migrations from 19 individuals tracked with geolocators and 2) map the migration routes, wintering and stopover areas for this population. Tracking methods only provide temporal information on the migration period between departure and arrival. However, migration starts with the fuelling that takes place ahead of departure. Here we estimate the period of first fuelling using published fuel deposition rates and thus explore migration speed using tracking data. We found that migration duration was shorter in autumn than in spring. Migration speed was higher in autumn, with all individuals undertaking a direct flight to the wintering areas, while in spring most made a stopover. Wind patterns could drive whimbrels to stop in spring, but be more favourable during autumn migration and allow a direct flight. Additionally, the stopover might allow the appraisal of weather conditions closer to the breeding areas and/or improve body condition in order to arrive at the breeding sites with reserves.  相似文献   

19.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

20.
ABSTRACT.   Because their breeding and wintering areas are in remote locations, little is known about the biology of Black-necked Cranes ( Grus nigricollis ), including their migratory behavior. Using satellite telemetry, we monitored the migration of Black-necked Cranes ( N = 6) in China to determine migration routes and the location of stopover sites. From 2005 to 2007, four cranes were tracked during two spring migrations and one fall migration, one was tracked during one spring and one fall migration, and one was tracked during one spring migration. On average, the cranes made seven flights over a 5-d period to migrate 651 km to breeding areas in the spring. In the fall, birds averaged six flights in 5 d to migrate 694 km. The routes traveled by cranes during spring and autumn migration were similar. Both the migration distances and duration of migration are the shortest reported for any crane species to date. Most stopover sites were in areas along rivers and close to wetlands in the Daliang Mountains and the Ruoergai Plateau. Conservation measures are needed to reduce habitat loss (wetland and pasture) in the Daliang Mountains and establish a reserve for stopover sites in the Ruoergai marshes, such as Longriba and Bai River in Hongyuan County.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号