首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 660 毫秒
1.
The effects of electro-acupuncture (EA) on insulin-like growth factor-I (IGF-I) expression in the spared dorsal root ganglia (DRG) and associated spinal dorsal horns were explored in cats subjected to unilateral removal of L1–L5 and L7–S2 DRG, sparing the L6 DRG. Immunohistochemistry revealed the presence of IGF-I immunoreactive products in the L6 DRG neurons and some neurons and glial cells in the spinal cord. Western blot demonstrated that the level of IGF-I was significantly up-regulated both in the spared DRG and the dorsal horns of L3 and L6 cord segments at both 7 and 14 days post operation following EA. The present findings demonstrated the association between neuroplasticity and IGF-I expression, suggesting the possible role of IGF-I in EA promoted spinal cord plasticity.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin and characterized by a relentless loss of motor neurons that causes a progressive muscle weakness until death. Among the several pathogenic mechanisms that have been related to ALS, a dysregulation of calcium-buffering proteins in motor neurons of the brain and spinal cord can make these neurons more vulnerable to disease progression. Downstream regulatory element antagonist modulator (DREAM) is a neuronal calcium-binding protein that plays multiple roles in the nucleus and cytosol. The main aim of this study was focused on the characterization of DREAM and glial fibrillary acid protein (GFAP) in the brain and spinal cord tissues from transgenic SOD1G93A mice and ALS patients to unravel its potential role under neurodegenerative conditions. The DREAM and GFAP levels in the spinal cord and different brain areas from transgenic SOD1G93A mice and ALS patients were analyzed by Western blot and immunohistochemistry. Our findings suggest that the calcium-dependent excitotoxicity progressively enhanced in the CNS in ALS could modulate the multifunctional nature of DREAM, strengthening its apoptotic way of action in both motor neurons and astrocytes, which could act as an additional factor to increase neuronal damage. The direct crosstalk between astrocytes and motor neurons can become vulnerable under neurodegenerative conditions, and DREAM could act as an additional switch to enhance motor neuron loss. Together, these findings could pave the way to further study the molecular targets of DREAM to find novel therapeutic strategies to fight ALS.  相似文献   

3.
Adult stem cells offer special therapeutic prospects because they can be isolated for autologous transplantation, expanded ex vivo, and differentiated into various cell types. We previously reported that bone marrow-derived mesenchymal stem cells improve neurological deficits in neurodegenerative disease animal models. However, the efficacy of adipose tissue-derived stem cells (ADSCs) transplantation in similar models remains unknown. Herein, we demonstrate that ADSCs, when transplanted into Niemann-Pick disease type C (NP-C) mouse cerebellum, elicit rescue of Purkinje neurons and restoration of motor coordination together with alleviation of inflammatory responses as verified by immunohistochemistry and real-time PCR using glial fibrillary acidic protein (GFAP), F4/80, IL-1β, IL-6, and TNF-α. Most importantly, ADSCs enhance electrically active Purkinje neurons with functional synaptic formation after transplantation in NP-C disease model mice. This report demonstrates for the first time that ADSCs can rescue imperiled Purkinje neurons and alleviate the inflammatory response in NP-C disease model mice, thereby signifying the therapeutic potential of ADSCs for neurodegenerative diseases.  相似文献   

4.
Impact spinal cord injury (20 g-cm) was induced in rat by weight drop. The immunoreactivity of mcalpain was examined in the lesion and adjacent areas of the cord following trauma. Increased calpain immunoreactivity was evident in the lesion compared to control and the immunostaining intensity progressively increased after injury. The calpain immunoreactivity was also increased in tissue adjacent to the lesion. mCalpain immunoreactivity was significantly stronger in glial and endothelial cells, motor neurons and nerve fibers in the lesion. The calpain immunoreactivity also increased in astrocytes and microglial cells in the adjacent areas. Proliferation of microglia and astrocytes identified by GSA histochemical staining and GFAP immunostaining, respectively, was seen at one and three days after injury. Many motor neurons in the ventral horn showed increased calpain immunoreactivity and were shrunken in the lesion. These studies indicate a pivotal role for calpain and the involvement of glial cells in the tissue destruction in spinal cord injury. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

5.
An isolated thoracic spinal cord of the neonatal rat in vitro spontaneously generates sympathetic nerve discharge (SND) at ~25°C, but it fails in SND genesis at ≤ 10°C. Basal levels of the c-Fos expression in the spinal cords incubated at ≤ 10°C and ~25°C were compared to determine the anatomical substrates that might participate in SND genesis. Cells that exhibited c-Fos immunoreactivity were virtually absent in the spinal cords incubated at ≤ 10°C. However, in the spinal cords incubated at ~25°C, c-Fos-positive cells were found in the dorsal laminae, the white matter, lamina X, and the intermediolateral cell column (IML). Cell identities were verified by double labeling of c-Fos with neuron-specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), or choline acetyltransferase (ChAT). The c-Fos-positive cells distributed in the white matter and lamina X were NeuN-negative or GFAP-positive and were glial cells. Endogenously active neurons showing c-Fos and NeuN double labeling were scattered in the dorsal laminae and concentrated in the IML. Double labeling of c-Fos and ChAT confirmed the presence of active sympathetic preganglionic neurons (SPNs) in the IML. Suppression of SND genesis by tetrodotoxin (TTX) or mecamylamine (MECA, nicotinic receptor blocker) almost abolished c-Fos expression in dorsal laminae, but only mildly affected c-Fos expression in the SPNs. Therefore, c-Fos expression in some SPNs does not require synaptic activation. Our results suggest that spinal SND genesis is initiated from some spontaneously active SPNs, which are capable of TTX- or MECA-resistant c-Fos expression.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Histone deacetylase (HDAC) inhibitors have neuroprotective effects potentially useful for the treatment of neurodegenerative diseases including ALS; however, the molecular mechanisms underlying their potential efficacy is not well understood. Here we report that protein acetylation in urea-soluble proteins is differently regulated in post-mortem ALS spinal cord. Two-dimensional electrophoresis (2-DE) analysis reveals several protein clusters with similar molecular weight but different charge status. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) identifies glial fibrillary acidic protein (GFAP) as the dominant component in the protein clusters. Further analysis indicates six heavily acetylated lysine residues at positions 89, 153, 189, 218, 259 and 331 of GFAP. Immunoprecipitation followed by Western blotting confirms that the larger form of GFAP fragments are acetylated and upregulated in ALS spinal cord. Further studies demonstrate that acetylation of the proteins additional to GFAP is differently regulated, suggesting that acetylation and/or deacetylation play an important role in pathogenesis of ALS.  相似文献   

7.
Amyotrophic lateral sclerosis is characterized by selective motor neuron degeneration. An apoptotic pathway is thought to be involved. It is difficult, however, to analyze the molecular pathogenic mechanism in single motor neurons because of complexity in the neural tissue, which consists of multiple lineages of cells neighboring motor neurons. We quantified the caspase-1 and -3 mRNA in single motor neurons and neighboring glial cells isolated from the spinal ventral horn of mutant SOD1 transgenic (Tg) mice and littermates. Motor neurons and neighboring glial cells were isolated from spinal sections by laser microdissection, and the mRNAs were quantified by RT-PCR. In the Tg mice, caspase-1 mRNA was first upregulated in motor neurons and second in glial cells. The caspase-3 mRNA was increased in motor neurons following the caspase-1 mRNA. These results indicated that caspase-1 and -3 mRNAs are differentially upregulated in motor neurons and glial cells of the Tg mice, and that mRNAs in isolated cells can be accurately assessed using our procedures.  相似文献   

8.
The effect of 0.1 mM thyrotropin-releasing hormone (TRH) on ventral horn neurons was investigated in eight experimental sets of tissue cultures established from ventral and dorsal portions of spinal cords of 13-15-day rat embryos. Cultures were treated with TRH from day 1 for 2-5 weeks. TRH-treated ventral spinal cord cultures (VSCC), compared with control VSCC, had more numerous and more healthy-appearing neurons and thicker bundles of long cell processes. In TRH-treated VSCC, choline acetyltransferase (ChAT) activity was greater than 16 times (p less than 0.005) and creatine kinase greater than 3 times (p less than 0.005) that of control VSCC. Morphologic and biochemical parameters of dorsal spinal cord cultures remained unchanged by TRH treatment. Since lower motor neurons are numerous in the ventral spinal cord (and not present in the dorsal cord) and since lower motor neurons are the major ChAT-containing spinal cord cells, our data demonstrating a beneficial effect of TRH on VSCC suggest a tropic effect of TRH on lower motor neurons.  相似文献   

9.
We examined the electrophysiological activity of motor neurons from the mouse model of severe spinal muscular atrophy (SMA) using two different methods: whole cell patch clamp of neurons cultured from day 13 embryos; and multi-electrode recording of ventral horns in spinal cord slices from pups on post-natal days 5 and 6. We used the MED64 multi-electrode array to record electrophysiological activity from motor neurons in slices from the lumbar spinal cord of SMA pups and their unaffected littermates. Recording simultaneously from up to 32 sites across the ventral horn, we observed a significant decrease in the number of active neurons in 5–6 day-old SMA pups compared to littermates. Ventral horn activity in control pups is significantly activated by serotonin and depressed by GABA, while these agents had much less effect on SMA slices. In contrast to the large differences observed in spinal cord, neurons cultured from SMA embryos for up to 21 days showed no significant differences in electrophysiological activity compared to littermates. No differences were observed in membrane potential, frequency of spiking and synaptic activity in cells from SMA embryos compared to controls. In addition, we observed no difference in cell survival between cells from SMA embryos and their unaffected littermates. Our results represent the first report on the electrophysiology of SMN-deficient motor neurons, and suggest that motor neuron development in vitro follows a different path than in vivo development, a path in which loss of SMN expression has little effect on motor neuron function and survival.  相似文献   

10.
11.
12.
The influx and metabolism of choline have been studied in primary cultures of isolated neurons and glial cells from chick embryo dissociated cerebral hemispheres. The results showed a correlation between both influx and metabolism of choline and the exogenous concentrations of choline. When neurons and glial cells were preincubated (10 min) and incubated in Krebs-Ringer phosphate solution with concentrations of choline lower (0.5 μM) or higher (150 μM) than the one present in the growth medium, the metabolism of choline, as a function of time, approached saturation following unusual kinetics. This suggests a non steady state of the endocellular concentrations of free choline. Moreover, when both neurons and glial cells were preincubated (10 min) with 50 μM choline and then incubated (2 min) with various concentrations of choline, only one uptake mechanism was measured, while the preincubation in the absence of choline followed by the incubation of the cells with various concentrations of choline showed the presence of two apparent Km's with different affinities.The results also indicate the capacity of glial cells to incorporate choline suggesting a storage function for the cells.  相似文献   

13.
We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well‐known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP‐positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP‐positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 642–660, 2016  相似文献   

14.
The displacement of immature neurons from their place of origin in the germinal epithelium toward their adult positions in the nervous system appears to involve migratory pathways or guides. While the importance of radial glial fibers in this process has long been recognized, data from recent investigations have suggested that other mechanisms might also play a role in directing the movement of young neurons. We have labeled autonomic preganglionic cells by microinjections of horseradish peroxidase (HRP) into the sympathetic chain ganglia of embryonic rats in order to study the migration and differentiation of these spinal cord neurons. Our results, in conjunction with previous observations, suggest that the migration pattern of preganglionic neurons can be divided into three distinct phases. In the first phase, the autonomic motor neurons arise in the ventral ventricular zone and migrate radially into the ventral horn of the developing spinal cord, where, together with somatic motor neurons, they form a single, primitive motor column (Phelps P. E., Barber R. P., and Vaughn J. E. (1991). J. Comp. Neurol. 307:77–86). During the second phase, the autonomic motor neurons separate from the somatic motor neurons and are displaced dorsally toward the intermediate spinal cord. When the preganglionic neurons reach the intermediolateral (IML) region, they become progressively more multipolar, and many of them undergo a change in alignment, from a dorsoventral to a mediolateral orientation. In the third phase of autonomic motor neuron development, some of these cells are displaced medially, and occupy sites between the IML and central canal. The primary and tertiary movements of the preganglionic neurons are in alignment with radial glial processes in the embryonic spinal cord, an arrangement that is consistent with a hypothesis that glial elements might guide autonomic motor neurons during these periods of development. In contrast, during the second phase, the dorsal translocation of preganglionic neurons occurs in an orientation perpendicular to radial glial fibers, indicating that glial elements are not involved in the secondary migration of these cells. The results of previous investigations have provided evidence that, in addition to glial processes, axonal pathways might provide a substrate for neuronal migration. Logically, therefore, it is possible that the secondary dorsolateral translocation of autonomic preganglionic neurons could be directed along early forming circumferential axons of spinal association interneurons, and this hypothesis is supported by the fact that such fibers are appropriately arrayed in both developmental time and space to guide this movement.  相似文献   

15.
This study investigated the protective potential of Naringin (NIN) against cadmium chloride (CdCl2) mediated hepatotoxicity using human hepatocellular carcinoma (HepG2) cells. An optimal concentration of NIN (5 μM) was potent enough to confer cytoprotection against CdCl2 (50 μM) as was observed by MTT assay. Preconditioning with NIN maintained redox homeostasis, mitochondrial membrane potential, and reduced apoptosis as marked by decrease in the percentage sub‐G0/G1 and Annexin V‐FITC/propidium iodide positive cells (apoptotic). NIN pretreatment maintained the levels of protein thiol along with endogenous activities of Superoxide dismutase, Glutathione S‐transferase, and Catalase and lowered lipid peroxidation. Decreased Bax/Bcl2 ratio along with reduced Caspase 3 cleavage and Cytochrome c release indicated that NIN conditioning blocked mitochondrial‐mediated apoptosis. Increased Nrf2 and metallothionein (MT) acted as adaptive response in the presence of cadmium. Thus, the protective mechanism of NIN is attributed to its antioxidant potential which aids in redox homeostasis and prevents CdCl2 mediated cytotoxicity.  相似文献   

16.
It was shown spectrophotometrically that in Krushinsky-Molodkina and Wistar rats the ratio of the activity of the aerobic H-forms of lactic dehydrogenase (LDH) to the activity of the anaerobic M-forms was higher in the neurons of the cerebral cortex and the Purkinje's cells of the cerebellum and in their glial cells-satellites than in the motor neurons of the anterior horns of the spinal cord and their perineuronal glia. In Krushinsky-Molodkina rats (with genetically-determined high sensitivity to audiogenic convulsions) epileptiform attacks under the effect of sound were accompanied by a marked activation of both the H- and the M-forms of LDH in the cortical neurons in the absence of any shifts in the perineuronal glia. On the contrary, the activity of all the forms of LDH was unchanged in the spinal motor neurons, whereas in the neuroglia cells surrounding these neurons there was a distinct increase in the activity of the H-forms of LDH. In the Purkinje's cells of the cerebellum an increase and in the glial cells- satellites -- a reduction of the activity of the M-forms of LDH in case of convulsions was seen.  相似文献   

17.
The displacement of immature neurons from their place of origin in the germinal epithelium toward their adult positions in the nervous system appears to involve migratory pathways or guides. While the importance of radial glial fibers in this process has long been recognized, data from recent investigations have suggested that other mechanisms might also play a role in directing the movement of young neurons. We have labeled autonomic preganglionic cells by microinjections of horseradish peroxidase (HRP) into the sympathetic chain ganglia of embryonic rats in order to study the migration and differentiation of these spinal cord neurons. Our results, in conjunction with previous observations, suggest that the migration pattern of preganglionic neurons can be divided into three distinct phases. In the first phase, the autonomic motor neurons arise in the ventral ventricular zone and migrate radially into the ventral horn of the developing spinal cord, where, together with somatic motor neurons, they form a single, primitive motor column (Phelps P. E., Barber R. P., and Vaughn J. E. (1991). J. Comp. Neurol. 307:77-86). During the second phase, the autonomic motor neurons separate from the somatic motor neurons and are displaced dorsally toward the intermediate spinal cord. When the preganglionic neurons reach the intermediolateral (IML) region, they become progressively more multipolar, and many of them undergo a change in alignment, from a dorsoventral to a mediolateral orientation. In the third phase of autonomic motor neuron development, some of these cells are displaced medially, and occupy sites between the IML and central canal. The primary and tertiary movements of the preganglionic neurons are in alignment with radial glial processes in the embryonic spinal cord, an arrangement that is consistent with a hypothesis that glial elements might guide autonomic motor neurons during these periods of development. In contrast, during the second phase, the dorsal translocation of preganglionic neurons occurs in an orientation perpendicular to radial glial fibers, indicating that glial elements are not involved in the secondary migration of these cells. The results of previous investigations have provided evidence that, in addition to glial processes, axonal pathways might provide a substrate for neuronal migration. Logically, therefore, it is possible that the secondary dorsolateral translocation of autonomic preganglionic neurons could be directed along early forming circumferential axons of spinal association interneurons, and this hypothesis is supported by the fact that such fibers are appropriately arrayed in both developmental time and space to guide this movement.  相似文献   

18.
With a highly sensitive electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) system, proteins were identified in minimal amounts of spinal cord from patients with the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and compared to proteins in spinal cord from control subjects. The results show 18 versus 16 significantly identified (p < 0.05) proteins, respectively, all known to be found in the central nervous system. The most abundant protein in both groups was the glial fibrillary acidic protein, GFAP. Other proteins were, for example, hemoglobin alpha- and beta chain, myelin basic protein, thioredoxin, alpha enolase, and choline acetyltransferase. This study also includes the technique of laser microdissection in combination with pressure catapulting (LMPC) for the dissection of samples and specific neurons. Furthermore, complementary experiments with nanoLC-matrix assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS) confirmed the results of the ESI-FTICR MS screening and provided additional results of further identified proteins.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is the most common adult onset motor neuron disease. The etiology and pathogenic mechanisms of the disease remain unknown, and there is no effective treatment. Here we show that intrathecal transplantation of human motor neurons derived from neural stem cells (NSCs) in spinal cord of the SOD1G93A mouse ALS model delayed disease onset and extended life span of the animals. When HB1.F3.Olig2 (F3.Olig2) cells, stable immortalized human NSCs encoding the human Olig2 gene, were treated with sonic hedgehog (Shh) protein for 5–7 days, the cells expressed motor neuron cell type-specific phenotypes Hb9, Isl-1 and choline acetyltransferase (ChAT). These F3.Olig2-Shh human motor neurons were transplanted intrathecally in L5–L6 spinal cord of SOD1G93A mice, and at 4 weeks post-transplantation, transplanted F3.Olig2-Shh motor neurons expressing the neuronal phenotype markers NF, MAP2, Hb9, and ChAT were found in the ventral horn of the spinal cord. Onset of clinical signs in ALS mice with F3.Olig2-Shh motor neuron implants was delayed for 7 days and life span of animals was significantly extended by 20 days. Our results indicate that this treatment modality of intrathecal transplantation of human motor neurons derived from NSCs might be of value in the treatment of ALS patients without significant adverse effects.  相似文献   

20.
Temocapril, a angiotensin-converting enzyme (ACE) inhibitor, was tested for neurotrophic activity in primary explant cultures of ventral spinal cord of fetal rats (VSCC). Temocapril had a remarkable effect on neurite outgrowth with a 4.2- to 5.1-fold increased over that of control VSCC at their effective concentrations. In temocapril-treated VSCC, choline acetyltransferase (ChAT) activity was also increased 2.4–3.2 times over that of control at 10–9 and 10–8 M, respectively. Our data suggest that temocapril is a candidate for neurotrophic factors on spinal motor neurons in vitro. A possible therapeutic role for temocapril in damaged motor neurons, such as in motor neuropathy and amyotrophic lateral sclerosis, remains to be defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号