首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background, aim, and scope  Composting is a viable technology to treat the organic fraction of municipal solid waste (OFMSW) because it stabilizes biodegradable organic matter and contributes to reduce the quantity of municipal solid waste to be incinerated or land-filled. However, the composting process generates environmental impacts such as atmospheric emissions and resources consumption that should be studied. This work presents the inventory data and the study of the environmental impact of two real composting plants using different technologies, tunnels (CT) and confined windrows (CCW). Materials and methods  Inventory data of the two composting facilities studied were obtained from field measurements and from plant managers. Next, life cycle assessment (LCA) methodology was used to calculate the environmental impacts. Composting facilities were located in Catalonia (Spain) and were evaluated during 2007. Both studied plants treat source separated organic fraction of municipal solid waste. In both installations the analysis includes environmental impact from fuel, water, and electricity consumption and the main gaseous emissions from the composting process itself (ammonia and volatile organic compounds). Results and discussion  Inventory analysis permitted the calculation of different ratios corresponding to resources consumption or plant performance and process yield with respect to 1 t of OFMSW. Among them, it can be highlighted that in both studied plants total energy consumption necessary to treat the OFMSW and transform it into compost was between 130 and 160 kWh/t OFMSW. Environmental impact was evaluated in terms of global warming potential (around 60 kg CO2/t OFMSW for both plants), acidification potential (7.13 and 3.69 kg SO2 eq/t OFMSW for CT and CCW plant respectively), photochemical oxidation potential (0.1 and 3.11 kg C2H4 eq/t OFMSW for CT and CCW plant, respectively), eutrophication (1.51 and 0.77 kg /t OFMSW for CT and CCW plant, respectively), human toxicity (around 15 kg 1,4-DB eq/t OFMSW for both plants) and ozone layer depletion (1.66 × 10−5 and 2.77 × 10−5 kg CFC−11 eq/t OFMSW for CT and CCW plant, respectively). Conclusions  This work reflects that the life cycle perspective is a useful tool to analyze a composting process since it permits the comparison among different technologies. According to our results total energy consumption required for composting OFMSW is dependent on the technology used (ranging from 130 to 160 kWh/t OFMSW) as water consumption is (from 0.02 to 0.33 m3 of water/t OFMSW). Gaseous emissions from the composting process represent the main contribution to eutrophication, acidification and photochemical oxidation potentials, while those contributions related to energy consumption are the principal responsible for global warming. Recommendations and perspectives  This work provides the evaluation of environmental impacts of two composting technologies that can be useful for its application to composting plants with similar characteristics. In addition, this study can also be part of future works to compare composting with other OFMSW treatments from a LCA perspective. Likewise, the results can be used for the elaboration of a greenhouse gasses emissions inventory in Catalonia and Spain.  相似文献   

2.
3.

Background, aim, and scope  

Life Cycle Assessment (LCA) is an emerging supporting tool designed to help practitioner in systematically assessing the environmental performance of selected product’s life cycle. A product’s life cycle includes the extraction of raw materials, production, and usage, and ends with waste treatment or disposal. Life cycle impact assessment (LCIA) as a part of LCA is a method used to derive the environmental burdens from selected product’s stages. LCIA is structured in classification, characterization, normalization and weighting. Presently most of the LCIA practices use European database to establish the characterization, normalization and weighting value. However, using these values for local LCA practice might not be able to reflect the actual Malaysian’s environmental scenario. The aim of this study is to create a Malaysian version of normalization and weighting value using the pollution database within Malaysia.  相似文献   

4.
5.
6.
7.

Purpose

Agriculture is a major water user worldwide, potentially depriving many ecosystems of water. Comprehensive global impact assessment methodologies are therefore required to assess impacts from water consumption on biodiversity. Since scarcity of water, as well as species richness, varies greatly between different world regions, a spatially differentiated approach is needed. Therefore, our aim is to enhance a previously published methodology in terms of spatial and species coverage.

Methods

We developed characterization factors for lifecycle impact assessment (LCIA) targeting biodiversity loss of various animal taxa (i.e., birds, reptiles, mammals, and amphibians) in wetlands. Data was collected for more than 22,000 wetlands worldwide, distinguishing between surface water- and groundwater-fed wetlands. Additionally, we account for a loss of vascular plant species in terrestrial ecosystems, based on precipitation. The characterization factors are expressed as global fractions of potential species extinctions (PDF) per cubic meter of water consumed annually and are developed with a spatial resolution of 0.05 arc degrees. Based on the geographic range of species, as well as their current threat level, as indicated by the International Union for Conservation of Nature (IUCN), we developed a vulnerability indicator that is included in the characterization factor.

Results and discussion

Characterization factors have maximal values in the order of magnitude of 10?11 PDF·year/m3 for animal taxa combined and 10?12 PDF·year/m3 for vascular plants. The application of the developed factors for global cultivation of wheat, maize, cotton, and rice highlights that the amount of water consumption alone is not sufficient to indicate the places of largest impacts but that species richness and vulnerability of species are indeed important factors to consider. Largest impacts are calculated for vascular plants in Madagascar, for maize, and for animal taxa; in Australia and the USA for surface water consumption (cotton); and in Algeria and Tunisia for groundwater consumption (cotton).

Conclusions

We developed a spatially differentiated approach to account for impacts from water consumption on a global level. We demonstrated its functionality with an application to a global case study of four different crops.
  相似文献   

8.
The International Journal of Life Cycle Assessment - Regionalized life cycle impact assessment (LCIA) has rapidly developed in the past decade, though its widespread application, robustness, and...  相似文献   

9.

Background, aim and scope  

Life cycle assessment (LCA) enables the objective assessment of global environmental burdens associated with the life cycle of a product or a production system. One of the main weaknesses of LCA is that, as yet, there is no scientific agreement on the assessment methods for land-use related impacts, which results in either the exclusion or the lack of assessment of local environmental impacts related to land use. The inclusion of the desertification impact in LCA studies of any human activity can be important in high-desertification risk regions.  相似文献   

10.

Purpose  

Life Cycle Impact Assessment methodology is still lacking a procedure that relates phosphorus emission to ecological damage in freshwater ecosystems. The aim of this study is to apply new insights in the characterization of aqueous eutrophication at the end-point level. Characterization factors for freshwater eutrophication in European waters caused by emissions of phosphorus to agricultural soils and freshwater were developed. The characterization factors are representative for emissions to the 101 most important European river catchments west of the Ural Mountains.  相似文献   

11.

Purpose

Land use life cycle impact assessment is calculated as a distance to target value—the target being a desirable situation defined as a reference situation in Milà i Canals et al.’s (Int J Life Cycle Assess 12(1):2–4, 2007) widely accepted framework. There are several reference situations. This work aims to demonstrate the effect of the choice of reference situation on land impact indicators.

Methods

Various reference situations are reported from the perspective of the object of assessment in land in life cycle assessment (LCA) studies and the modeling choices used in life cycle land impact indicators. They are analyzed and classified according to additional LCA modeling requirements: the type of LCA approach (attributional or consequential), cultural perspectives (egalitarian, hierarchist or individualist), and temporal preference. Sets of characterization factors (CF) by impact pathway, land cover, and region are calculated for different reference situations. These sets of CFs by reference situation are all compared with a baseline set. A case study on different crop types is used to calculate impact scores from different sets of CFs and compare them.

Results and discussion

Comparing the rankings of the CFs from two different sets present inversions from 5% to 35% worldwide. Impact scores of the case study present inversions of 10% worldwide. These inversions demonstrate that the choice of a reference situation may reverse the LCA conclusions for the land use impact category. Moreover, these reference situations must be consistent with the different modeling requirements of an LCA study (approach, cultural perspective, and time preference), as defined in the goal and scope.

Conclusions

A decision tree is proposed to guide the selection of a consistent and suitable choice of reference situation when setting other LCA modeling requirements.
  相似文献   

12.

Purpose

The main goal of this paper is to present the feasibility of the quantitative method presented in the Product Social Impact Assessment (PSIA) handbook throughout a case study. The case study was developed to assess the social impacts of a tire throughout its entire life cycle. We carried out this case study in the context of the Roundtable for the Product Social Metrics project in which 13 companies develop two methodologies, a qualitative and a quantitative one, for assessing the social impact of product life cycle.

Methods

The quantitative methodology implemented for assessing the social impact of a Run On Flat tire mounted in a BMW 3 series consists of 26 indicators split in three groups. Each group represents a stakeholder group. Primary data of the quantitative indicators were collected along the product life cycle of the Run On Flat by involving the companies, which owned the main steps of the product life cycle. Throughout this case study, an ideal/worst-case scenario was defined for the distance-to-target approach to compare the social performances of more products when they are available.

Results and discussion

The implementation of the PSIA quantitative method to a Run On Flat illustrated the necessity to have a referencing step in order to interpret the results. This is particularly important when the results are used to support decision-making process in which no experts are involved. It frequently happens in a big company where the management level has to take often decisions on different topics. Reference values were defined using ideal or worst-case-target scenarios (Fontes et al. 2014). For those topics where it was possible, an ideal/ethical scenario was defined, e.g., 0 h of child labor per product. In other cases, we defined a worst-case scenario, e.g., 0 training hours per product. It was then possible to interpret the results using a distance-to-target approach. A matrix was developed in the case study for identifying in which step of the product life cycle data is not available; that means we need more transparency in the supply chain.

Conclusions

Each value of the matrix can be compared to the ideal/worst scenario to compare the step to each other and to identify along the product life cycle which step and the relative supplier that needs further measures to improve the product performance. Furthermore, a quantitative value for each indicator related to the product life cycle is calculated and compared with the ideal/worst scenario. The case study on Run On Flat represents the first implementation of the quantitative method of PSIA.
  相似文献   

13.
马逍天  洪静兰  翟一杰  申晓旭 《生态学报》2022,42(21):8640-8649
水足迹作为评价水资源消耗和污染情况的综合性指标,能够对水环境面临的环境风险进行科学系统的量化、评估和管理。针对传统水足迹影响方法未进行环境影响评估等问题,研究构建了一个符合ISO 14046国际标准的基于生命周期评价的通用型本土化水足迹影响评价模型。研究通过多介质逸度模型模拟了多介质污染物排放在环境中的迁移转换,从而剔除最终未进入到水介质的部分,同时仅考虑了与水环境有关的经口摄入途径,首创了集水稀缺影响、水污染生态与健康风险量化为一体的且适用于我国国情的水足迹评价模型。模型的构建可帮助实现水系统优化,有效控制二次污染及污染转移,实现精准管控。同时由于模型具有普适性,其也可为其他国家或区域开展生命周期水足迹影响评价提供理论支持和实践经验。此外,研究以某企业镍铁合金生产的水足迹影响评价为例,对模型的应用进行了示例研究。研究发现为该企业镍铁合金生产的水足迹影响主要来源于交通运输、焦炭生产、发电、压缩空气以及电极糊制备等间接过程。同时,为降低其环境负荷,需控制氮、磷、二氧化硫及铬、砷、汞、铜等重金属的排放。  相似文献   

14.

Purpose

Although the funeral market is propagating new ‘green’ alternatives and exploring innovative techniques like resomation, very little is known about the environmental impact of funerals. This research aimed to develop a benchmark of funerals, by quantifying the environmental impacts of the most common funeral techniques, i.e. burial and cremation, by identifying where the main impacts originate from and by comparing these impacts to impacts of other activities during a person’s life.

Methods

The environmental impacts of funerals were analysed by means of a life cycle assessment (LCA), based on Dutch company information, literature and expert judgements. The results were analysed per impact category but also on an aggregated level by means of shadow prices. Two sensitivity analyses were performed: one examined the high impact of cotton in funeral coffins; the other checked the results by means of another weighting method.

Results and discussion

The results showed no significant difference between the two funeral techniques in five impact categories. Burial has the lowest impact in more than half of the categories, but its impact is many times higher in the two most differing categories than for cremation. The total shadow price of burial is about 30 % higher than the shadow price of cremation, but the main cause for this difference is a highly debated category, namely land use. If the results would be considered without the shadow prices of land impact categories, burial would score 25 % lower than cremation. These results are representing average practise and may deviate on certain aspects for other countries, but as a starting point for further studies, this benchmark is well applicable.

Conclusions and recommendations

This study delivered an environmental benchmark of funerals and insights in the impacts of the individual processes, which can be used in further assessment of ’green’ funeral options. The benchmark results show that the environmental impact of funerals is largely determined by secondary processes and that the total impact can be quite small in comparison to other human activities. Besides these environmental insights, it is important to take into account social, cultural, climatic, local, economical and ethical arguments before changing policies or giving recommendations.
  相似文献   

15.

Purpose

In recent history, human development overbalanced towards economic growth has often been accompanied by the degradation and reduction of freshwater resources at the expense of freshwater dependent ecosystems. For their subsistence and correct functioning, understanding environmental water requirements (EWR) represents an area of great interest for life cycle impact assessment (LCIA) and it has been only marginally explored. The aim of this paper is to investigate how this concept has evolved in ecological and hydrological literature and how it can be better integrated in LCIA, to identify potential options for improvement of LCIA indicators in the short, mid and long term.

Methods

To address the limitations of existing LCIA approaches in modelling EWR, four families of EWR methods have been reviewed, namely hydrological, hydraulic, habitat simulation and holistic methods. Based on existing scientific literature and their broad application, 24 methods have been selected and their suitability to be adopted in LCIA has been evaluated against nine criteria, with regard to data management issues, accuracy, scientific robustness, and potential for future development. A semi-quantitative performance score has been subsequently assigned for each criterion, showing the main strengths and weaknesses of selected methods.

Results and discussion

The underlying rationale of the chosen approaches is markedly different, likewise the input information needed and results applicability. Hydrological methods are well suited for the development of global models and they are the only ones currently considered in LCIA, although their applicability remains limited to water stress indicators. Habitat modelling is identified as an essential step for the development of mechanistic LCIA models and endpoint indicators. In this respect, hydraulic, habitat simulation and holistic methods are fit for the purpose. However, habitat simulation methods represent the best compromise between scientific robustness and applicability in LCIA. For this reason, a conceptual framework for the development of habitat-based characterization factors has been proposed. Among the evaluated habitat simulation methods, ESTIMHAB showed the best performance and was the method retained for the development of an LCIA model that will assess the consequences of water consumption on stream ecosystems.

Conclusions

This study identifies the advantages of specific modelling approaches for the assessment of water requirements for ecosystems. Selected methods could support the development of LCIA models at different levels. In the short-term for improving environmental relevance of water stress indicators, and in the mid/long-term to build up midpoint habitat indicators relating water needs of ecosystems with new endpoint metrics.
  相似文献   

16.
全元  刘昕  王辰星  单鹏  董孟婷  唐明方  吴钢 《生态学报》2016,36(19):6012-6018
以南水北调工程为例的输水管道工程在解决我国水资源供需矛盾和地域分配不均的问题中发挥着重要作用,输水管道工程的建设在产生巨大社会、经济、生态效益的同时,也给工程建设区域、调水相关区域脆弱的生态环境带来新的问题。工程建设的环境影响评价往往关心工程建设、运行时期对相关区域内主要环境要素的影响、响应及评价,而对工程建设相关的关键生态系统的影响关注较小。而南水北调等输水管道工程是与水密切相关的国家级大型工程,对工程建设区域、影响区域的水生生态系统产生较大的影响,如何科学、定量地评价输水工程对关键生态系统的影响是输水工程建设管理人员关注的热点之一。基于对生态需水评价理论与方法的总结及输水工程生态影响定量评价难点的分析,对生态需水与水生生态系统健康之间相辅相成的关系进行研究,提出了将生态需水引入输水工程生态影响评价的技术路径与评价模型。以南水北调中线工程为例,对其影响范围内的生态需水量进行评价,进而判断工程建设运行对相关区域关键生态系统的影响。  相似文献   

17.
Background  The primary purpose of environmental assessment is to protect biological systems. Data collected over the last several decades indicates that the greatest impacts on biological resources derive from physical changes in land use. However, to date there is no consensus on indicators of land use that could be applicable worldwide at all scales. This has hampered the assessment of land use in the context of LCA. Objectives  The Institute for Environmental Research and Education and its partner Defenders of Wildlife have begun an effort to develop the necessary consensus. Methods  In July 2000, they held a workshop attended by a diverse group of interested parties and experts to develop a preliminary list of life cycle indicators for land use impacts. Results  Their preliminary list of impact indicators includes: protection of priority habitats/species; soil characteristics: soil health; proximity to & protection of high priority vegetative communities; interface between water and terrestrial habitats/buffer zones; assimilative capacity of water and land; hydrological function; percent coverage of invasive species within protected areas; road density; percent native-dominated vegetation; restoration of native vegetation; adoption of Best Management Practices linked to biodiversity objectives; distribution (patchiness; evenness, etc.); and connectivity of native habitat. Conclusion  The list of indicators conforms well to other efforts in developing indicators. There appears to be convergence among experts in the field and in related fields on the appropriate things to measure. Future Prospects  These indicators are currently being tested in the United States. Further workshops and testing is planned towards developing internationally recognized indicators for land use.  相似文献   

18.
Salinity is an increasing environmental problem in agricultural ecosystems and is not adequately represented in conventional life cycle assessment (LCA) impact categories. It is often not the total quantity of salts emitted or the proportion of salt accumulated in the soil profile that is the primary mechanism for deteriorating soil conditions for irrigated salinity, rather the ratio of major cations in the soil matrix and the potential for colloid dispersion and reduced permeability. A soil salinisation potential (SP) is proposed as an indicator for irrigated salinity and potential soil degradation from poor irrigation practices. The indicator uses the threshold electrolyte concentration concept that predicts the adjusted sodium adsorption ratio (SAR)/ Electrical conductivity (EC) ratio that soil will no longer flocculate, but potentially disperse. The SAR is converted to a threshold EC and compared to the measured EC in order to develop a site-specific irrigation equivalence factor (EF). This site/region/process specific EF is then used to weight the sodium load to soil and repeated for each stage throughout the entire life cycle to determine the overall Salinisation Potential (SP). The data required for calculating the SP is generally readily available either on site or from the water chemistry of the local watercourses. Preliminary calculations simply require the volume, pH, electrical conductivity (EC), alkalinity and the concentrations of Na, Ca, and Mg of the irrigation water. The site/process/region specific nature of the indicator ensures a quantitative measure to enable comparisons between different systems and is useful for identifying stages in the life cycle of a product (particularly food products), where the potential for soil salinisation and soil degradation is most severe.  相似文献   

19.

Purpose

Guidance is needed on best-suited indicators to quantify and monitor the man-made impacts on human health, biodiversity and resources. Therefore, the UNEP-SETAC Life Cycle Initiative initiated a global consensus process to agree on an updated overall life cycle impact assessment (LCIA) framework and to recommend a non-comprehensive list of environmental indicators and LCIA characterization factors for (1) climate change, (2) fine particulate matter impacts on human health, (3) water consumption impacts (both scarcity and human health) and 4) land use impacts on biodiversity.

Methods

The consensus building process involved more than 100 world-leading scientists in task forces via multiple workshops. Results were consolidated during a 1-week Pellston Workshop? in January 2016 leading to the following recommendations.

Results and discussion

LCIA framework: The updated LCIA framework now distinguishes between intrinsic, instrumental and cultural values, with disability-adjusted life years (DALY) to characterize damages on human health and with measures of vulnerability included to assess biodiversity loss. Climate change impacts: Two complementary climate change impact categories are recommended: (a) The global warming potential 100 years (GWP 100) represents shorter term impacts associated with rate of change and adaptation capacity, and (b) the global temperature change potential 100 years (GTP 100) characterizes the century-scale long term impacts, both including climate-carbon cycle feedbacks for all climate forcers. Fine particulate matter (PM2.5) health impacts: Recommended characterization factors (CFs) for primary and secondary (interim) PM2.5 are established, distinguishing between indoor, urban and rural archetypes. Water consumption impacts: CFs are recommended, preferably on monthly and watershed levels, for two categories: (a) The water scarcity indicator “AWARE” characterizes the potential to deprive human and ecosystems users and quantifies the relative Available WAter REmaining per area once the demand of humans and aquatic ecosystems has been met, and (b) the impact of water consumption on human health assesses the DALYs from malnutrition caused by lack of water for irrigated food production. Land use impacts: CFs representing global potential species loss from land use are proposed as interim recommendation suitable to assess biodiversity loss due to land use and land use change in LCA hotspot analyses.

Conclusions

The recommended environmental indicators may be used to support the UN Sustainable Development Goals in order to quantify and monitor progress towards sustainable production and consumption. These indicators will be periodically updated, establishing a process for their stewardship.
  相似文献   

20.

Purpose

The production of cellulase enzymes (CE) has been identified as one major contributor towards the life cycle environmental and economic impacts of second-generation lignocellulosic bioethanol (LCB) production. Despite this knowledge, the literature lacks consistent and transparent life cycle assessments (LCA) which compare CE production based on the three more commonly proposed carbon sources: cornstarch glucose, sugar cane molasses and pre-treated softwood. Furthermore, numerous LCAs of LCB omit CE production from their system boundaries, with several authors citing the lack of available production data.

Methods

In this article, we perform a comparative attributional LCA for the on-site production of 1 kg CE in full broth via submerged aerobic fermentation (SmF) based on the three alternative carbon sources, cases A, B and C, respectively. We determine life cycle inventory (LCI) material consumption using stoichiometric equations and volume flow, supplemented with information from the literature. All LCIs are provided in a consistent and transparent manner, filling the existing data gaps towards performing representative LCAs of LCB production with on-site CE production. Life cycle impact assessment (LCIA) results are determined with SimaPro 8 software using CML 1A baseline and non-baseline methods along with cumulative energy demand and are compared to results of similar studies. Sensitivity analysis is performed both for all major assumptions and for market changes with the application of advanced attributional LCA (AALCA).

Results and discussion

We find that CE production from pre-treated softwood (case C) provides the lowest environmental impacts, followed by sugar cane molasses (case B) and then cornstarch glucose (case A), with global warming potentials of 7.9, 9.1 and 10.6 kg CO2 eq./kg enzyme, respectively. These findings compare well with those of similar studies, though great variation exists in the literature. Through sensitivity analysis, we determine that results are sensitive to assumptions made concerning carbon source origin, applied allocation, market changes, process efficiency and electricity supply.

Conclusions

Furthermore, we find that the contribution of CE production towards the overall life cycle impacts of LCB is significant and that the omission of this sub-process in LCAs of LCB production can compromise their representativeness.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号