首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lethal toxin of Bacillus anthracis, which is composed of two separate proteinaceous exotoxins, namely protective antigen and lethal factor, is central to the pathogenesis of anthrax. Low levels of this toxin are known to induce release of cytokines such as tumor necrosis factor α (TNF-α). In the present study we investigated the effect of dehydroepiandrosterone (DHEA), melatonin (MLT), or DHEA + MLT on production of lethal toxin-induced TNF-α in mouse peritoneal macrophages. We found that treatment with DHEA significantly inhibited the TNF-α production caused by anthrax lethal toxin. Exposure of MLT to anthrax lethal toxin-treated macrophages also decreased the release of TNF-α to the extracellular medium as compared to the control. However, combined use of DHEA and MLT also inhibited TNF-α release, but not more than single therapies. These results suggest that DHEA and MLT may have a therapeutic role in reducing the increased cytokine production induced by anthrax lethal toxin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A new biological activity of bovine parotid protein acting on immuno-competent lymphocytes to lead to polyclonal antibody responses was demonstrated. A significant amount of antibody to SRBC or antihapten antibody to TNP-SRBC, BPO-SRBC, or SA-SRBC was produced in mice by adding the appropriate doses of bovine parotid protein, suggesting that this protein may be a nonspecific B cell activator which acts on the B cells in a similar way as casein or gelatin.  相似文献   

3.
A J Kerwin 《CMAJ》1984,131(4):312-314
Sudden death of cardiac origin in drivers of motor vehicles has been perceived to be a danger to other drivers, passengers, pedestrians and property, and in provinces other than Ontario people with a history of cardiac disease are not permitted to hold a commercial driver''s license. An examination of the literature indicates that injury or death of others occurs rarely when someone dies while driving. It is postulated that drivers who have a myocardial infarction experience warning symptoms, which allows them to take action to prevent a serious accident. It is suggested that a history of heart disease should not necessarily prevent people from holding a commercial driver''s license.  相似文献   

4.
Listeria monocytogenes induces apoptosis in vitro and in vivo in a variety of cell types. However, the mechanism of cell death in L. monocytogenes -infected macrophages was initially reported to be distinct from apoptosis. Here, we studied the mechanism of L. monocytogenes -induced cell death using sensitive fluorescent techniques. We found that caspase-1 activation preceded cell death of macrophages infected with L. monocytogenes , using fluorogenic substrates. Caspase-1 activation was diminished after infection with wild-type L. monocytogenes when cells were treated with NH4Cl, or if they were infected with a listeriolysin mutant that cannot escape from the phagolysosome. Mitochondrial membrane integrity was preserved during the infection. A particular mechanism of cell death, recently termed 'pyroptosis', is associated with infection by intracellular microorganisms, and has an inherent pro-inflammatory character, due to involvement of caspase-1 activation with consequent IL-1β and IL-18 production. Cell death through caspase-1 activation would constitute a defence mechanism of macrophages which induces cell death to eliminate the bacteria's intracytosolic niche and recruits early host's defences through the secretion of inflammatory cytokines.  相似文献   

5.
Hepatocyte cell death and liver inflammation have been well recognized as central characteristics of nonalcoholic steatohepatitis (NASH), however, the underlying molecular basis remains elusive. The kinase receptor-interacting protein 1 (RIP1) is a multitasking molecule with distinct functions in regulating apoptosis, necroptosis, and inflammation. Dissecting the role of RIP1 distinct functions in different pathophysiology has absorbed huge research enthusiasm. Wild-type and RIP1 kinase-dead (Rip1K45A/K45A) mice were fed with high-fat diet (HFD) to investigate the role of RIP1 kinase activity in the pathogenesis of NASH. Rip1K45A/K45A mice exhibited significantly alleviated NASH phenotype of hepatic steatosis, liver damage, fibrosis as well as reduced hepatic cell death and inflammation compared to WT mice. Our results also indicated that both in vivo lipotoxicity and in vitro saturated fatty acids (palmitic acid) treatment were able to induce the kinase activation of RIP1 in liver macrophages. RIP1 kinase was required for mediating inflammasome activation, apoptotic and necrotic cell death induced by palmitic acid in both bone marrow-derived macrophage and mouse primary Kupffer cells. Results from chimeric mice established through lethal irradiation and bone marrow transplantation further confirmed that the RIP1 kinase in hematopoietic-derived macrophages contributed mostly to the disease progression in NASH. Consistent with murine models, we also found that RIP1 kinase was markedly activated in human NASH, and the kinase activation mainly occurred in liver macrophages as indicated by immunofluorescence double staining. In summary, our study indicated that RIP1 kinase was phosphorylated and activated mainly in liver macrophages in both experimental and clinical NASH. We provided direct genetic evidence that the kinase activity of RIP1 especially in hematopoietic-derived macrophages contributes to the pathogenesis of NASH, through mediating inflammasome activation and cell death induction. Macrophage RIP1 kinase represents a specific and potential therapeutic target for NASH.Subject terms: Cell death and immune response, Chronic inflammation  相似文献   

6.
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD.  相似文献   

7.
8.
Programmed cell death (PCD), known as hypersensitive response cell death, has an important role in plant defense response. The signaling pathway of PCD remains unknown. We employed AAL toxin and Nicotiana umbratica to analysis plant PCD. AAL toxin is a pathogenicity factor of the necrotrophic pathogen Alternaria alternata f. sp. lycopersici. N. umbratica is sensitive to AAL toxin, susceptible to pathogens, and effective in Tobacco rattle virus-based virus-induced gene silencing (VIGS). VIGS analyses indicated that AAL toxin-triggered cell death (ACD) is dependent upon the mitogen-activated protein (MAP) kinase kinase MEK2, which is upstream of both salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) responsible for ethylene (ET) synthesis. ET treatment of MEK2-silenced N. umbratica re-established ACD. In SIPK- and WIPK-silenced N. umbratica, ACD was compromised and ET accumulation was not observed. However, in contrast to the case of MEK2-silenced plants, ET treatment did not induce cell death in SIPK- and WIPK-silenced plants. This work showed that ET-dependent pathway and MAP kinase cascades are required in ACD. Our results suggested that MEK2-SIPK/WIPK cascades have roles in ET biosynthesis; however, SIPK and WIPK have other roles in ET signaling or another pathway leading to cell death by AAL toxin.  相似文献   

9.
The abundance of dead macrophages in close proximity to HOCl-modified proteins in advanced atherosclerotic plaques implicates HOCl in the killing of macrophages and the formation of the necrotic core region. The mechanism of HOCl mediated death of macrophages was unknown, so using human monocyte derived macrophages (HMDM) we here have shown that HOCl causes a rapid necrotic cell death characterized by loss of MTT reduction, cellular ATP and cell lysis without caspase-3 activation in HMDM cells. The HOCl causes a rise in cytosolic calcium level via the plasma membrane L- and T-type calcium channels and endoplasmic reticulum RyR channel. Blocking of the calcium channels or the addition of calpain inhibitors prevents the HOCl mediated loss of mitochondrial potential, lysosome failure and HMDM cell death. Blocking MPT-pore formation with cyclosporin A also prevents the loss of mitochondrial membrane potential, lysosomal destabilization and HMDM cell death. Blocking the calcium mitochondrial uniporter with ruthenium red also blocks the loss of mitochondrial potential but only at high concentrations. HOCl appears to cause HMDM cell death through destabilization of cytosolic calcium control resulting in the failure of both the mitochondria and lysosomes.  相似文献   

10.
Previous studies have found that the primary pathogenesis of liver cancer progression is linked to excessive cancer cell proliferation and rapid metastasis. Although therapeutic advances have been made for the treatment of liver cancer, the mechanism underlying the liver cancer progression has not been fully addressed. In the present study, we explored the role of spliced X-box binding protein 1 (XBP1) in regulating the viability and death of liver cancer cells in vitro. Our study demonstrated that XBP1 was upregulated in liver cancer cells when compared to the primary hepatocytes. Interestingly, the deletion of XBP1 could reduce the viability of liver cancer cells in vitro via inducing apoptotic response. Further, we found that XBP1 downregulation was also linked to proliferation arrest and migration inhibition. At the molecular levels, XBP1 inhibition is followed by activation of the Mst1 pathway which promoted the phosphorylation of c-Jun N-terminal kinase (JNK). Then, the active Mst1-JNK pathway mediated mitochondrial reactive oxygen species (mROS) overproduction and then excessive ROS induced cancer cell death. Therefore, our study demonstrated a novel role played by XBP1 in modulating the viability of liver cancer cells via the Mst1-JNK-mROS pathways.  相似文献   

11.
Macrophages are crucial components of the host defence against Streptococcus pyogenes . Here, we demonstrate the ability of S. pyogenes to kill macrophages through the activation of an inflammatory programmed cell death pathway. Macrophages exposed to S. pyogenes exhibited extensive cytoplasmic vacuolization, cellular and organelle swelling and rupture of the plasma membrane typical of oncosis. The cytotoxic effect of S. pyogenes on macrophages is mediated by the streptococcal cytolysins streptolysin S and streptolysin O and does not require bacterial internalization. S. pyogenes -induced death of macrophages was not affected by the addition of osmoprotectant, implicating the activation of an orchestrated cell death pathway rather than a simple osmotic lysis. This programme cell death pathway involves the loss of mitochondria transmembrane potential (Δ ψ m) and was inhibited by the addition of exogenous glycine, which has been shown to prevent necrotic cell death by blocking the opening of death channels in the plasma membrane. The production of reactive oxygen species and activation of calpains were identified as mediators of the cell death process. We conclude that activation of the inflammatory programmed cell death pathway in macrophages could constitute an important pathogenic mechanism by which S. pyogenes evades host immune defences and causes disease.  相似文献   

12.
We investigated the mechanisms of anti-IgM antibody-induced cell death in a recently established human surface IgM+ IgD+ B lymphoma cell line, B104, the growth of which is irreversibly inhibited by anti-IgM antibody but not by anti-IgD antibody, and compared it with the cell death of T cells via TCR/CD3 complex and with the cell death of a murine anti-IgM antibody-sensitive B lymphoma cell line, WEHI-231. The rapid time course of B104 cell death and its requirements for de novo macromolecular synthesis and Ca2+ influx suggest that anti-IgM antibody-induced B104 cell death is an active Ca(2+)-dependent programmed cell death. Moreover, cyclosporin A rescued B104 cells from this lethal signal, via surface IgM, suggesting that the intracellular mechanisms involved are quite similar to those of T cell death. DNA fragmentation, which has been reported in TCR/CD3 complex-mediated T cell death, apoptosis, was not involved in the B104 cell death process, but the possible involvement of DNA single-strand breaks was suggested. Observations under light microscopy and transmission electron microscopy indicated that the morphologic features of dying B104 cells resembled necrosis rather than apoptosis. B104 cell death was shown to be quite distinct from that of WEHI-231 in cell death kinetics, the mode of cell death, and the response to cyclosporin A. These data collectively indicate that the death of B104 cells resulting from surface IgM cross-linking represents a hitherto undefined mode of programmed cell death.  相似文献   

13.
14.
Research during the past two decades has revealed that specialized cysteine proteases act as conserved initiators or executioners for programmed cell death (PCD) in eukaryotes. Caspases were first identified as common regulators of PCD in metazoans, whereas the role of metacaspases (MCs) as regulators of cellular suicide in plants has only been shown genetically in the past several years. Together with recent biochemical and molecular characterizations of some of the representative MCs from different model systems, multiple mechanisms that can mediate the post-translational regulation of these proteases are beginning to emerge. Further elucidation of these regulatory pathways and definition of the downstream degradomes targeted by MCs should lead to a better understanding of cell death control in plants, protozoans, and fungi.  相似文献   

15.
We have shown previously that mitochondrial ROS production is essential to turn growth factor (GF) removal into cell death. Activated RAF, AKT, Bcl-2 and antioxidants protected equally well against ROS accumulation and subsequent death. Here we investigated whether protection by survival signaling and antioxidants utilizes shared or distinct targets. Using serum deprivation from NIH 3T3 fibroblasts and IL-3 withdrawal from promyeloid 32D cells, we showed that pro-survival signaling by activated RAF but not AKT prevented the decline in Mcl-1 following GF abrogation. GF starvation increased levels of Bim in both model systems, which was prevented by RAF in 32D cells but not in NIH 3T3 fibroblasts. RAF and AKT suppressed activation and mitochondrial translocation of BAX. Also, antioxidant treatment efficiently prevented BAX activation and death of 32D cells but showed little effect on its mitochondrial translocation. No significant impact of antioxidant treatment on Bim or Mcl-1 expression was observed. ROS produced during GF abrogation also did not alter the activity of intracellular signaling pathways, which have been implicated previously in cell killing by pro-oxidants. Together these data suggest Bcl-2 family proteins as convergence point for RAF and ROS in life and death decisions.  相似文献   

16.
Anthrax is a serious bacterial disease of man and animals whose pathogenesis involves the secretion of lethal toxins in the host. The intracellular delivery of toxic complexes involves a complex structural rearrangement of sub-domains of the exotoxin protective antigen (PA). We have used a biocompatible microelectrode array, coated with J774 mouse macrophages, to detect PA binding and intracellular signaling resulting in nitric oxide (NO) release. We have found that exposure of macrophages to PA in vitro activates the inducible isoform of NO synthase (iNOS), thus increasing the extracellular concentration of NO and nitrite, in a dose- and time-dependent manner. However, the cell-binding domain 4 of PA (PA4) could substitute for full-length PA to achieve equivalent NO release, suggesting that the heptamerisation of PA, ultimately required to deliver toxic complexes into the cell, is not a requirement for the activation of an intracellular cascade through the ERK 1/2 and the PI-3K/ Akt kinase pathways and that these events could be triggered by the binding of PA4 alone to its cell membrane receptor. Further, we have found that pre-incubation of the cells with azidothymidine, a pro-oxidant drug, significantly improves the limit of detection of rPA-induced NO release thus offering a sensitive tool for the analysis of the kinetics of anthrax intoxication and ultimately drug discovery.  相似文献   

17.
Leukotriene B4 binding sites were investigated in alveolar macrophages obtained from guinea-pigs by brochoalveolar lavage. Analysis of the binding data was compatible with a two-receptors model. Best-fit computer-assisted evaluation of the results yielded a KD = 0.33 +/- 0.18 nM with 618 +/- 138 binding sites/cell for the high-affinity receptor, and KD = 52.9 +/- 12.3 nM with 95,400 +/- 37,900 sites/cell for the low-affinity binding site. Study of the dissociation rate of labelled ligand induced by dilution only and by dilution plus excess unlabelled ligand showed no differences in the two situations. These data suggest that the finding of two receptors is not due to negative cooperativity. Since most studies failed to demonstrate two distinct LTB4-binding proteins, the present results reinforces the hypothesis of LTB4 receptors in guinea-pig alveolar macrophages being a single protein with interchangeable affinity states.  相似文献   

18.
韦锦学  顾军 《生命科学》2006,18(2):180-182
淋巴细胞的激活诱导细胞死亡(AICD)的分子机制已经得到了广泛的研究。巨噬细胞中也存在AICD,但是诱导巨噬细胞AICD的分子机理仍不是很清楚。最近,一些研究表明zVAD或IFNγ通过提高MEF2C蛋白稳定性,从而增加其在巨噬细胞中的含量。MEF2C和TLR2、4信号通路一起,诱导了Nur77的表达。Nur77的表达介导了巨噬细胞的凋亡。LPS激活的ERK和p38是诱导Nur77表达和细胞凋亡所必需的。p38/STAT1/ROS途径也介导了巨噬细胞的AICD。撤除血清诱导的巨噬细胞凋亡可能是一种新的巨噬细胞AICD模型。这些发现将有助于我们对巨噬细胞AICD的进一步了解。  相似文献   

19.
20.
The protein phosphatase-inhibitory algal toxins, okadaic acid and microcystin-LR, induced overphosphorylation of keratin and disruption of the keratin cytoskeleton in freshly isolated rat hepatocytes. In hepatocyte cultures, the toxins elicited DNA fragmentation and apoptotic cell death within 24 h. All these toxin effects could be prevented by the grapefruit flavonoid, naringin. The cytoprotective effect of naringin was apparently limited to normal hepatocytes, since the toxin-induced apoptosis of hepatoma cells, rat or human, was not prevented by the flavonoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号