首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Body size and temperature are primary determinants of metabolic rate, and the standard metabolic rate (SMR) of animals ranging in size from unicells to mammals has been thought to be proportional to body mass (M) raised to the power of three-quarters for over 40 years. However, recent evidence from rigorously selected datasets suggests that this is not the case for birds and mammals. To determine whether the influence of body mass on the metabolic rate of vertebrates is indeed universal, we compiled SMR measurements for 938 species spanning six orders of magnitude variation in mass. When normalized to a common temperature of 38 degrees C, the SMR scaling exponents of fish, amphibians, reptiles, birds and mammals are significantly heterogeneous. This suggests both that there is no universal metabolic allometry and that models that attempt to explain only quarter-power scaling of metabolic rate are unlikely to succeed.  相似文献   

2.
In most vertebrates, uptake and oxidation of circulating sugars by locomotor muscles rises with increasing exercise intensity. However, uptake rate by muscle plateaus at moderate aerobic exercise intensities and intracellular fuels dominate at oxygen consumption rates of 50 % of maximum or more. Further, uptake and oxidation of circulating fructose by muscle is negligible. In contrast, hummingbirds and nectar bats are capable of fueling expensive hovering flight exclusively, or nearly completely, with dietary sugar. In addition, hummingbirds and nectar bats appear capable of fueling hovering flight completely with fructose. Three crucial steps are believed to be rate limiting to muscle uptake of circulating glucose or fructose in vertebrates: (1) delivery to muscle; (2) transport into muscle through glucose transporter proteins (GLUTs); and (3) phosphorylation of glucose by hexokinase (HK) within the muscle. In this review, we summarize what is known about the functional upregulation of exogenous sugar flux at each of these steps in hummingbirds and nectar bats. High cardiac output, capillary density, and blood sugar levels in hummingbirds and bats enhance sugar delivery to muscles (step 1). Hummingbird and nectar bat flight muscle fibers have relatively small cross-sectional areas and thus relatively high surface areas across which transport can occur (step 2). Maximum HK activities in each species are enough for carbohydrate flux through glycolysis to satisfy 100 % of hovering oxidative demand (step 3). However, qualitative patterns of GLUT expression in the muscle (step 2) raise more questions than they answer regarding sugar transport in hummingbirds and suggest major differences in the regulation of sugar flux compared to nectar bats. Behavioral and physiological similarities among hummingbirds, nectar bats, and other vertebrates suggest enhanced capacities for exogenous fuel use during exercise may be more wide spread than previously appreciated. Further, how the capacity for uptake and phosphorylation of circulating fructose is enhanced remains a tantalizing unknown.  相似文献   

3.
The oxygen dependence of cellular energy metabolism.   总被引:14,自引:0,他引:14  
Suspensions of cultured C 1300 neuroblastoma cells, sarcoma 180 ascites tumor cells, and Tetrahymena pyriformis cells were used to study the oxygen dependence of cellular energy metabolism. Cellular respiration was found to be almost independent of oxygen tension to values of less than 20 μm with an apparent Km for oxygen of less than 1 μm. In contrast, the reduction of mitochondrial cytochrome c was found to be dependent on oxygen tension at all values from 240 μm downward. Oxygen dependence was also observed in terms of cellular energy metabolism expressed as adenosine triphosphate and adenosine diphosphate concentrations. These data provide direct evidence that in intact cells mitochondrial oxidative phosphorylation is oxygen dependent throughout the physiological range of oxygen tension (air saturation and below). The respiratory rate is maintained constant when the oxygen tension is lowered by decreasing values of the cytosolic [ATP][ADP][Pi] and intramitochondrial [NAD]+][NADH] because these regulatory parameters adjust to maintain a constant rate of ATP synthesis. The lack of oxygen dependence in the respiratory rate means that the rate of cellular ATP utilization is essentially oxygen independent until the mitochondria can no longer synthesize ATP at the required rate and [ATP][ADP][Pi].  相似文献   

4.
5.
The hearts of many bivalve and gastropod molluscs are resistant to exposure to hypoxic and anoxic conditions. Glycogen and aspartate are simultaneously fermented leading to the accumulation of alanine, succinate and alanopine/strombine. Lactate is not a major end product of anaerobic metabolism in molluscan hearts. In contrast, vertebrate hearts respond to hypoxia by the fermentation of glycogen leading to lactate formation. There is some evidence for aspartate and glutamate breakdown in vertebrate hearts during anoxia. However, the quantitative contribution of this process to energy production is small. The differences in modes of energy production in molluscan and vertebrate hearts may reflect adaptations to long-term as opposed to short-term anoxia.  相似文献   

6.
7.
Fig-eating by vertebrate frugivores: a global review   总被引:10,自引:0,他引:10  
The consumption of figs (the fruit of Ficus spp.: Moraceae) by vertebrates is reviewed using data from the literature, unpublished accounts and new field data from Borneo and Hong Kong. Records of frugivory from over 75 countries are presented for 260 Ficus species (approximately 30% of described species). Explanations are presented for geographical and taxonomic gaps in the otherwise extensive literature. In addition to a small number of reptiles and fishes, 1274 bird and mammal species in 523 genera and 92 families are known to eat figs. In terms of the number of species and genera of fig-eaters and the number of fig species eaten we identify the avian families interacting most with Ficus to be Columbidae, Psittacidae, Pycnonotidae, Bucerotidae, Sturnidae and Lybiidae. Among mammals, the major fig-eating families are Pteropodidae, Cercopithecidae, Sciuridae, Phyllostomidae and Cebidae. We assess the role these and other frugivores play in Ficus seed dispersal and identify fig-specialists. In most, but not all, cases fig specialists provide effective seed dispersal services to the Ficus species on which they feed. The diversity of fig-eaters is explained with respect to fig design and nutrient content, phenology of fig ripening and the diversity of fig presentation. Whilst at a gross level there exists considerable overlap between birds, arboreal mammals and fruit bats with regard to the fig species they consume, closer analysis, based on evidence from across the tropics, suggests that discrete guilds of Ficus species differentially attract subsets of sympatric frugivore communities. This dispersal guild structure is determined by interspecific differences in fig design and presentation. Throughout our examination of the fig-frugivore interaction we consider phylogenetic factors and make comparisons between large-scale biogeographical regions. Our dataset supports previous claims that Ficus is the most important plant genus for tropical frugivores. We explore the concept of figs as keystone resources and suggest criteria for future investigations of their dietary importance. Finally, fully referenced lists of frugivores recorded at each Ficus species and of Ficus species in the diet of each frugivore are presented as online appendices. In situations where ecological information is incomplete or its retrieval is impractical, this valuable resource will assist conservationists in evaluating the role of figs or their frugivores in tropical forest sites.  相似文献   

8.
N-Acetyl-l-aspartate (NAA) is an amino acid that is present in the vertebrate brain. Its concentration is one of the highest of all free amino acids and, although NAA is synthesized and stored primarily in neurons, it cannot be hydrolyzed in these cells. Furthermore, neuronal NAA is dynamic and turns over more than once each day by virtue of its continuous efflux, in a regulated intercompartmental cycling via extracellular fluids, between neurons and a second compartment in oligodendrocytes. The metabolism of NAA, between its anabolic compartment in neurons and its catabolic compartment in oligodendrocytes, and its possible physiological role in the brain has been the subject of much speculation. There are two human inborn errors in metabolism of NAA. One is Canavan disease (CD), in which there is a buildup of NAA (hyperacetylaspartia) and associated spongiform leukodystrophy, caused by a lack of aspartoacylase activity. The other is a singular human case of lack of NAA (hypoacetylaspartia), where the enzyme that synthesizes NAA is apparently absent. There are two animal models currently available for studies of CD. One is a rat with a natural deletion of the catabolic enzyme, and the other a gene knockout mouse. In addition to the presence of NAA in neurons, its prominence in 1H nuclear magnetic resonance spectroscopic studies has led to its wide use in diagnostic human medicine as both an indicator of brain pathology and of disease progression in a variety of CNS diseases. In this review, various hypotheses regarding the metabolism of NAA and its possible role in the CNS are evaluated. Based on this analysis, it is concluded that although NAA may have several functions in the CNS, an important role of the NAA intercompartmental system is osmoregulatory, and in this role it may be the primary mechanism for the removal of intracellular water, against a water gradient, from myelinated neurons.  相似文献   

9.
Calcium metabolism in vertebrate photoreceptors   总被引:1,自引:0,他引:1  
So far all attempts to demonstrate a rapid, light-stimulated release of calcium from disks into the cytosol at a sufficiently high stoichiometry have failed. Either the release stoichiometry was too small or the velocity too slow to account for the amplification in visual transduction. The multitude of failures demonstrate that regulation of intracellular calcium is a very delicate process and the idea of a robust calcium channel in the disk membrane that is opened by rhodopsin itself is certainly an oversimplification. The strongest evidence in favour of the "calcium transmitter hypothesis" is the large calcium efflux from rods in a retina. However as long as the source of the calcium efflux inside the rod cells is unknown conclusions about the role of this calcium efflux are premature. Unfortunately, measurements of intracellular calcium, such as those by Brown and coworkers (93,94) in their pioneering work on photoreceptors in the ventral eye of Limulus, have not yet been feasible in vertebrates.  相似文献   

10.
The requirements of a cloned macrophage-like cell line, J774.16, for oxygen metabolism, and the nature of the defect in oxidative metabolism in a variant clone derived from it, J774.C3C, were studied. Upon stimulation with phorbol myristate acetate (PMA), the parental clone produced approximately 1 nmol O2-/min/10(6) cells, whereas the variant clone produced no detectable O2- under the same conditions. Sustained O2- production by J774.16 was totally dependent on extracellular glucose; in glucose-free medium, the cells initiated O2- production but could not sustain it. When cells were stimulated with PMA, glucose-C-1 oxidation of J774.16 cells increased 20-fold while that of J774.C3C remained at resting levels. O2- production in J774.16 cells was inhibited by some agents known to block mitochondrial electron transport before coenzyme Q, such as rotenone and tetrathiafulvalene, whereas antimycin A enhanced O2- production. A dissociation between O2- production and glucose-C-1 oxidation was observed when J774.16 was treated with certain metabolic inhibitors. Quinacrine, 2,4-dinitrophenol, chlorpromazine, and trifluoperazine inhibited O2- production completely under conditions in which glucose-C-1 oxidation was reduced only by 30%. Rotenone inhibited O2- production with no effect on glucose-C-1 oxidation whereas antimycin A augmented O2- production 50% but inhibited glucose oxidation by 20%. Glucose transport studies, with 2-deoxy-D-glucose, showed that the Km for glucose transport of both clones was about 1 mM, indicating that cells could effectively transport glucose even at low concentrations. The Vmax for glucose transport in both J774.16 and variant J774.C3C cells doubled after PMA stimulation, indicating that the variant was effectively stimulated by PMA, even though O2- was not produced. Similarly, PMA induced protein phosphorylation in both clones. No differences between clones J774.16 and J774.C3C in hexokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glutathione reductase, or glutathione peroxidase activities could be found. When dithionite-reduced and -oxidized difference spectra of plasma membranes of these clones were compared, comparable levels of b-type cytochrome were found in both clones. However, CO difference spectra indicated that CO was bound to a b-type cytochrome (presumed to be b-245) in clone J774.16 but not in J774.C3C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Contemporary data on three enzymes of vertebrate cross-striated muscle thick filaments, such as creatine kinase, AMP-deaminase and phosphofructokinase, are reviewed. The physico-chemical, enzymatic and regulatory properties and localization of these enzymes in different zones of the thick filament are considered. The functional relevance of localization of creatine kinase, AMP-deaminase and phosphofructokinase on thick filaments is discussed in terms of the possible role of the enzyme adsorption on subcellular structures in regulation of metabolic processes.  相似文献   

12.
Vertebrate photoreceptors can adjust their sensitivity to a wide range of light intensities spanning several orders of magnitude, the phenomenon of which is called light adaptation. Electrophysiological and biochemical studies have revealed that calcium can serve as an intracellular transmitter of light adaptation under the control of cGMP metabolism. After illumination, the cytoplasmic calcium concentration of a photoreceptor decreases, which in turn strongly activates photoreceptor guanylate cyclase. This calcium-dependent effect is mediated by a novel calcium-binding protein (recoverin) and leads to the restoration of the depleted cGMP pool after illumination.  相似文献   

13.
The oxygen dependence of hepatic cellular respiration was studied by employing simultaneous organ spectrophotometry of cytochromes and hemoglobin, the latter used as an intrasinusoidal optical oxygen probe. The Km of cytochrome aa3 for oxygen was found to be 6.8 microM in the isolated perfused liver and 0.3 microM in suspensions of isolated hepatocytes. The results indicate that the sinusoid-to-cell pO2 gradient is about 5 torr. Optical determination of the average effective pO2 indicates that the axial sinusoidal O2 profile does not conform to zero-order O2 uptake in the liver. Because of extensive NAD+ reduction, ethanol increases the thermodynamic driving force of oxidative phosphorylation, and it also increased the oxygen consumption in both the perfused liver and the hepatocyte suspension, but had no effect on the grade of steady-state cytochrome aa3 reduction, the cellular energy state [ATP]/[ADP].[Pi], or the Km of cytochrome aa3 for oxygen. The results indicate that hepatic energy metabolism is oxygen independent at very low O2 concentrations, but that the sinusoidal axial O2 concentration is anomalous, probably due to the spatial arrangement of the metabolizing systems.  相似文献   

14.
Glucose metabolism in fish: a review   总被引:3,自引:0,他引:3  
Teleost fishes represent a highly diverse group consisting of more than 20,000 species living across all aquatic environments. This group has significant economical, societal and environmental impacts, yet research efforts have concentrated primarily on salmonid and cyprinid species. This review examines carbohydrate/glucose metabolism and its regulation in these model species including the role of hormones and diet. Over the past decade, molecular tools have been used to address some of the downstream components of these processes and these are incorporated to better understand the roles played by carbohydrates and their regulatory paths. Glucose metabolism remains a contentious area as many fish species are traditionally considered glucose intolerant and, therefore, one might expect that the use and storage of glucose would be considered of minor importance. However, the actual picture is not so clear since the apparent intolerance of fish to carbohydrates is not evident in herbivorous and omnivorous species and even in carnivorous species, glucose is important for specific tissues and/or for specific activities. Thus, our aim is to up-date carbohydrate metabolism in fish, placing it to the context of these new experimental tools and its relationship to dietary intake. Finally, we suggest that new research directions ultimately will lead to a better understanding of these processes.  相似文献   

15.
16.
An important recent advance in the understanding of vertebrate photoreceptor light adaptation has come from the discovery that as many as eight distinct molecular mechanisms may be involved, and the realization that one of the principal mechanisms is not dependent on calcium. Quantitative analysis of these mechanisms is providing new insights into the nature of rod photoreceptor light adaptation.  相似文献   

17.
18.
19.
A study was made of the influence of binding of endogenous nonprotein thiols (glutathione, GSH) by N-ethylmaleimide before or after irradiation (7 Gy) of Ehrlich ascites tumor cells on the radioprotective effect of anoxia (argon, 0.003% O2). It was shown that the radioprotective effect of anoxia decreased as cell glutathione was removed before or after irradiation (similarly both immediately and 1 h after irradiation). Inspite of the fact that the GSH level decreased similarly before and after irradiation the radioprotective effect of anoxia was less pronounced in the latter case. The data obtained permit to evaluate quantitatively the contribution of endogenous GSH to the processes occurring at the time of irradiation and during the post-irradiation period.  相似文献   

20.
1. The depolarizing effectiveness of azelainylcholine (AzCh, a 7-C-chain dicholine) is about 10 times higher than that of succinylcholine (SCh, a 2-C-chain dicholine) in skeletal muscles of chick, frog and fish, and in body muscles of the earthworm. 2. In the chicken anterior latissimus dorsi (ALD) muscle, AzCh is about 100 times more effective than SCh. 3. In contrast to that in mammalian muscles, the AzCh-SCh sensitivity difference is not increased by denervation in frog muscles. 4. d-Tubocurarine is equally effective in the ALD and in other chicken muscles; its effectiveness is not decreased by denervation in frog muscles. 5. Cells containing muscarinic acetylcholine receptors are weakly sensitive to dicholines or not at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号