首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The common killifish, Fundulus heteroclitus, has historically been a favorite organism for the study of euryhalinity in teleost fish. Despite the species' large range of salinity tolerance, studies of osmoregulation in high salinity are rare, with most previous studies focused on fish transferred between freshwater and seawater. Similarly, while branchial transport properties have been studied extensively, there are relatively few studies investigating the role of the intestine in osmoregulation in killifish. This study sought to characterize the fluid and ion transport occurring in the intestinal tract of killifish adapted to seawater, and furthermore to investigate the adjustments that occur to these mechanisms following acute transfer to high salinity (70ppt). In vivo samples of blood plasma and intestinal fluids of seawater-acclimated killifish indicated absorption of Na(+), Cl(-), and water, the relative impermeability of the intestine to Mg(2+) and SO(4)(2-), and active secretion of HCO(3)(-) into the intestinal lumen. The details of these processes were investigated further using in vitro techniques of isolated intestinal sac preparations and an Ussing chamber pH-stat titration system. However, these methods were discovered to be of limited utility under physiologically relevant conditions due to tissue deterioration. Results that could be validly interpreted suggested that there are few changes to intestinal transport following transfer to high salinity, and that adjustments to epithelial permeability occur in the first 24h post-transfer.  相似文献   

2.
Cortisol plays an important role in controlling intestinal water and ion transport in teleosts possibly through glucocorticoid receptor (GR) and/or mineralocorticoid receptor. To better understand the role of GR in the teleost intestine, in a euryhaline tilapia, Oreochromis mossambicus, we examined (1) the intestinal localizations of GR; (2) the effects of environmental salinity challenge and cortisol treatment on GR mRNA expression. The mRNA abundance of GR in the posterior intestinal region of tilapia was found to be higher than that in the anterior and middle intestine. In the posterior intestine, GR appears to be localized in the mucosal layer. GR mRNA levels in the posterior intestine were elevated after exposure of freshwater fish to seawater for 7 days following an increase in plasma cortisol. Similarly, cortisol implantation in freshwater tilapia for 7 days elevated the intestinal GR mRNA. These results indicate that seawater acclimation is accompanied by upregulation of GR mRNA abundance in intestinal tissue, possibly as a consequence of the elevation of cortisol levels. In contrast, a single intraperitoneal injection of cortisol into freshwater tilapia decreased intestinal GR mRNA. This downregulation of the GR mRNA by cortisol suggests a dual mode of autoregulation of GR expression by cortisol.  相似文献   

3.
Simultaneous measurements of all major electrolytes including HCO3(-) and H+ as well as water demonstrated that fluids absorbed by the anterior intestine of the marine gulf toadfish under in vivo-like conditions on an overall net basis are hypertonic at 380 mOsm and acidic ([H+] = 27 mM). This unusual composition of fluids absorbed across the intestinal epithelium is due to the unusual intestinal fluid chemistry resulting from seawater ingestion and selective ion and water absorption along the gastro-intestinal tract. Measurement under near symmetrical conditions with high NaCl concentrations and low MgSO4 concentrations revealed absorption of iso-osmotic and much less acidic fluids by the intestinal epithelium, a situation resembling that of other water absorbing leaky vertebrate epithelia. Reduced luminal NaCl concentrations seen in vivo results in lower absolute water absorption rates but higher Cl-/HCO3(-) exchange rates which are associated with higher net H+ absorption rates. It appears that apical anion exchange is important for net Cl- uptake by the marine teleost intestine especially when luminal NaCl concentrations are low and/or when MgSO4 concentrations are high. Observations indicate that fluid absorption from solutions of low NaCl but high MgSO4 concentrations is energetically more demanding than absorption from NaCl rich solutions at the level of the intestinal epithelium. Furthermore, the high luminal MgSO4 concentration which is an unavoidable consequence of seawater ingestion projects a demand for renal and branchial compensation for intestinal MgSO4 uptake and absorption of hypertonic and acidic fluid by the intestine.  相似文献   

4.
Experiments compared intestinal HCO3- secretion in the intestine of marine teleost Gulf toadfish, Opsanus beta, to representatives of early chondrostean and chondrichthyan fishes, the Siberian sturgeon, Acipenser baerii, and white-spotted bamboo shark, Chiloscyllium plagiosum, respectively. As seen in marine teleosts, luminal HCO3- concentrations were 10-fold plasma levels in all species when exposed to hyperosmotic conditions. While intestinal water absorption left Mg2+ and SO4(2-) concentrated in intestinal fluids up to four-fold ambient seawater concentrations, HCO3- was concentrated up to 50 times ambient levels as a result of intestinal HCO3- secretion. Reduced luminal Cl- concentrations in the intestine of all species suggest that HCO3- secretion also occurs via Cl-/HCO3- exchange in chondrostean and chondrichthyan fishes. Sturgeon began precipitating carbonates from the gut after only 3 days at 14 per thousand, a mechanism utilized by marine teleosts to reduce intestinal fluid osmolality and maintain calcium homeostasis. Analysis of published intestinal fluid composition in the cyclostome Lampetra fluviatilis reveals that this species likely also utilize intestinal HCO3- secretion for osmoregulation. Analysis of existing cyclostome data and our results indicate that intestinal Cl-/HCO3- exchange plays an integral role in maintaining hydromineral balance not only in teleosts, but in all fish (and perhaps other animals) with a need to drink seawater.  相似文献   

5.
The ability to transition from freshwater to seawater environments is an intrinsic requirement of the life history of some fish species, including the anadromous rainbow trout (Oncorhynchus mykiss). The differences between hyper- and hypoosmoregulation are developed quickly (in hours to days), and at all scales, from gene expression to organ function. In this study, intestinal ion and water transport was examined in O. mykiss following acute transfer from freshwater (FW) to 70% seawater (SW). Plasma [Mg2+] increased at 24h post-transfer but recovered by 72 h. In the intestinal fluids, total CO? was found to increase with SW exposure/acclimation, while [Na+] decreased after 24h of SW exposure. Overall, in vitro experiments demonstrated the importance of base secretion to epithelial water uptake, and suggested that the primary physiological adjustments occurred 24-72 h after acute SW transfer. The mRNA expression of ion transporters important for intestinal osmoregulation and maintenance of acid-base balance was also investigated. A Na+/H+ exchanger (NHE2) and anion exchanger (SLC26a6) were hypothesized to be involved in the transport of acid-base equivalents, Na+, and Cl?, but were not uniformly expressed across tissue samples, and expression, where present, did not change following salinity transfer. NHE1, however, was expressed in all examined tissues (gill, kidney, anterior intestine, and pyloric cecae), but exhibited no changes in expression following acute salinity transfer.  相似文献   

6.
The gulf toadfish, Opsanus beta, is a marine teleost fish with an aglomerular kidney that is highly specialized to conserve water. Despite this adaptation, toadfish have the ability to survive when in dilute hypoosmotic seawater environments. The objectives of this study were to determine the joint role of the kidney and intestine in maintaining osmotic and ionic balance and to investigate whether toadfish take advantage of their urea production ability and use urea as an osmolyte. Toadfish were gradually acclimated to different salinities (0.5, 2.5, 5, 10, 15, 22, 33, 50 and 70 ppt (1.5%, 7.5%, 15%, 30%, 45%, 67%, 100%, 151% and 212% seawater)) and muscle tissue, urine, blood and intestinal fluids were analyzed for ion and in some cases urea concentration. The renal and intestinal ionoregulatory processes of toadfish responded to changes in salinity and when gradually acclimated, toadfish maintain a relatively constant plasma osmolality at environmental salinities of 5 to 50 ppt. However, at salinities lower (2.5 ppt) or higher (70 ppt) than this range, a significant deviation from resting plasma and urine osmolality as well as changes in muscle water content was measured, suggesting osmoregulatory difficulties at these salinities. The renal system compensates for dilute seawater by reducing Na+ reabsorption by the bladder, which allowed excess water to be excreted. In the case of hypersalinity, Na+ reabsorption was increased, which resulted in a conservation of water and the concentration of Mg2+, Cl-, SO(4)2- and urea. A similar pattern was observed within the gastrointestinal system. Notably, Mg2+, HCO3- and SO4(2-) were the dominant ions in the intestinal fluid under control and hypersaline conditions due to the absorption of Na+, Cl- and water. When exposed to dilute seawater conditions, the absorption of Na+ was greatly reduced which likely increased water elimination. As a result of decreased environmental levels and a reduction in drinking rate, Mg2+ and SO4(2-) in intestinal fluids under hypoosmotic conditions were greatly reduced. While urea did play a minor role in renal osmoregulation, toadfish appear to preferentially regulate Na+ and to some extend Cl- in urine and intestinal fluids.  相似文献   

7.
Abrupt transfer of rainbow trout from freshwater to 65% seawater caused transient disturbances in extracellular fluid ionic composition, but homeostasis was reestablished 48 h posttransfer. Intestinal fluid chemistry revealed early onset of drinking and slightly delayed intestinal water absorption that coincided with initiation of NaCl absorption and HCO(3)(-) secretion. Suggestive of involvement in osmoregulation, relative mRNA levels for vacuolar H(+)-ATPase (V-ATPase), Na(+)-K(+)-ATPase, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-HCO(3)(-) cotransporter 1, and two carbonic anhydrase (CA) isoforms [a general cytosolic isoform trout cytoplasmic CA (tCAc) and an extracellular isoform trout membrane-bound CA type IV (tCAIV)], were increased transiently in the intestine following exposure to 65% seawater. Both tCAc and tCAIV proteins were localized to apical regions of the intestinal epithelium and exhibited elevated enzymatic activity after acclimation to 65% seawater. The V-ATPase was localized to both basolateral and apical regions and exhibited a 10-fold increase in enzymatic activity in fish acclimated to 65% seawater, suggesting a role in marine osmoregulation. The intestinal epithelium of rainbow trout acclimated to 65% seawater appears to be capable of both basolateral and apical H(+) extrusion, likely depending on osmoregulatory status and intestinal fluid chemistry.  相似文献   

8.
The ontogeny of the digestive tract (DT) and of Na(+)/K(+)-ATPase localization was investigated during the early postembryonic development (from yolk sac larva to juvenile) of the euryhaline teleost Dicentrarchus labrax reared at two salinities: seawater and diluted seawater. Histology, electron microscopy and immunocytochemistry were used to determine the presence and differentiation of ion transporting cells. At hatching, the DT is an undifferentiated straight tube over the yolk sac. At the mouth opening (day 5), it comprises six segments: buccopharynx, esophagus, stomach, anterior intestine, posterior intestine and rectum, well differentiated at the juvenile stage (day 72). The enterocytes displayed ultrastructural features similar to those of mitochondria-rich cells known to be involved in active ion transport. At hatching, ion transporting cells lining the intestine and the rectum exhibited a Na(+)/K(+)-ATPase activity which increased mainly after the larva/juvenile (20 mm) metamorphic transition. The immunofluorescence intensity was dependent upon the stage of development of the gut as well as on the histological configuration of the analyzed segment. The appearance and distribution of enteric ionocytes and the implication of the DT in osmoregulation are discussed.  相似文献   

9.
Summary The relationship between alkaline phosphatase and environmental salinity was examined in the rainbow trout and the migratory rainbow (steelhead),Salmo gairdneri. The enzyme activity in tissues involved in osmoregulation was strongly correlated with the adaptation salinity and thus to the degree of salt and fluid transport in those tissues. After transfer from freshwater to seawater, the specific activity of the enzyme increased over 260% in the intestine, decreased by 50% in kidney, and was unchanged in the liver, an organ not directly involved in osmoregulation. The sea-run steelhead trout response was similar to the nonmigratory rainbow; although, the pre-migratory transformation (smoltification) had no effect on enzyme activity. Amino acid inhibitors of alkaline phosphatase significantly reduced fluid absorption in the isolated intestine of rainbow trout, reaffirming the relationship between the enzyme and fluid movement. Electrophoretic identification of trout alkaline phosphatase isozymes, clearly distinguishes the enzyme from different tissue origins. However, from the analysis of intestinal electrophoretic patterns, osmoregulatory adjustments are not associated with the induction of new alkaline phosphatase isozymes, or in the large scale preferential stimulation of one of the two existing intestinal isozymes over the other.  相似文献   

10.
Marine teleost fish precipitate divalent cations as carbonate deposits in the intestine to minimize the potential for excessive Ca2+ entry and to stimulate water absorption by reducing luminal osmotic pressure. This carbonate deposit formation, therefore, helps maintain osmoregulation in the seawater (SW) environment and requires controlled secretion of HCO3(-) to match the amount of Ca2+ entering the intestinal lumen. Despite its physiological importance, the process of HCO3(-) secretion has not been characterized at the molecular level. We analyzed the expression of two families of HCO3(-) transporters, Slc4 and Slc26, in fresh-water- and SW-acclimated euryhaline pufferfish, mefugu (Takifugu obscurus), and obtained the following candidate clones: NBCe1 (an Na+-HCO3(-) cotransporter) and Slc26a6A and Slc26a6B (putative Cl(-)/HCO3(-) exchangers). Heterologous expression in Xenopus oocytes showed that Slc26a6A and Slc26a6B have potent HCO3(-)-transporting activity as electrogenic Cl(-)/nHCO3(-) exchangers, whereas mefugu NBCe1 functions as an electrogenic Na+-nHCO3(-) cotransporter. Expression of NBCe1 and Slc26a6A was highly induced in the intestine in SW and expression of Slc26a6B was high in the intestine in SW and fresh water, suggesting their involvement in HCO3(-) secretion and carbonate precipitate formation. Immunohistochemistry showed staining on the apical (Slc26a6A and Slc26a6B) and basolateral (NBCe1) membranes of the intestinal epithelial cells in SW. We therefore propose a mechanism for HCO3(-) transport across the intestinal epithelial cells of marine fish that includes basolateral HCO3(-) uptake (NBCe1) and apical HCO3(-) secretion (Slc26a6A and Slc26a6B).  相似文献   

11.
The gills and intestinal epithelia of teleost fish express cystic fibrosis transmembrane conductance regulator (CFTR), and utilize this low conductance anion channel in the apical membrane for ion secretion in seawater gill and in the basolateral membrane for ion absorption in freshwater gill. Similarly, in the intestine CFTR is present in the basolateral membrane for intestinal absorption and also in the apical membrane of secreting intestine. The expression of CFTR and the directed trafficking of the protein to the apical or basolateral membrane is salinity-dependent. The CFTR gene has been cloned and sequenced from several teleost species and although all the major elements in the human gene are present, including two nucleotide binding domains that are common to all ATP binding cassette (ABC) transporters, the sequences are divergent compared to shark or human. In euryhaline fish adapting to seawater, CFTR, localized immunocytochemically, redistributes slowly from a basolateral location to the apical membrane while ion secretory capacity increases. The facility with which teleosts regulate CFTR expression and activation during salinity adaptation make this system an appealing model for the expression and trafficking operation of this labile gene product.  相似文献   

12.
Role of the "little brain" in the gut in water and electrolyte homeostasis   总被引:3,自引:0,他引:3  
H J Cooke 《FASEB journal》1989,3(2):127-138
The enteric nervous system plays a key role in maintenance of body fluid homeostasis by regulating the transport of ions by the intestinal epithelium. The epithelial cells normally absorb large volumes of fluid and ions daily, but tonically active submucosal neurons continuously suppress ion transport and limit the absorptive capacity of the intestine. Specialized nerve endings detect chemical, osmotic, or thermal alterations of the luminal contents or mechanical activity of the gut wall and encode this information as action potentials that propagate along nerve processes to the ganglia. Information transfer within the ganglia occurs at nicotinic cholinergic or other synapses. Ion transport is altered when neurotransmitters released from motor neurons interact with receptors on epithelial cells to initiate stimulus-response coupling. The signals that transduce changes in epithelial ion transport are largely unknown, except for acetylcholine, but may include vasoactive intestinal peptide or other peptides. These trigger changes in intracellular messengers that influence the state of ionic channels in the epithelial cells and thereby inhibit absorptive processes or stimulate secretory mechanisms. When conservation of salt and water is necessary, command signals from the central nervous system, and perhaps from the myenteric ganglia, will shut down the synaptic circuits in the submucosal ganglia and enhance the absorptive capacity of the bowel.  相似文献   

13.
Marine teleosts drink large amounts of seawater to compensate for continuous osmotic water loss. We investigated a possible significant role of the rectum in water absorption in seawater-adapted eel. In rectal sacs filled with balanced salt solution (BSS) and incubated in isotonic BSS, water absorption was greater in seawater-adapted eel than in freshwater eel. Since rectal fluid osmolality was slightly lower than plasma osmolality in seawater-adapted eel, effects of rectal fluid osmolality on water absorption were examined in rectal sacs filled with artificial rectal fluid with different osmolality. Rectal water absorption was greater at lower rectal fluid osmolality, suggesting that an osmotic gradient between the blood and rectal fluid drives the water movement. Ouabain, a specific inhibitor of Na+/K+-ATPase, inhibited water absorption in rectal sacs, indicating that an osmotic gradient favorable to rectal water absorption was created by ion uptake driven by Na+/K+-ATPase. Expression levels of aquaporin 1 (AQP1), a water-selective channel, were significantly higher in the rectum than in the anterior and posterior intestines. Immunoreaction for Na+/K+-ATPase was detected in the mucosal epithelial cells in the rectum with more intense staining in the basal half than in the apical half, whereas AQP1 was located in the apical membrane of Na+/K+-ATPase-immunoreactive epithelial cells. The rectum is spatially separated from the posterior intestine by a valve structure and from the anus by a sphincter. Such structures allow the rectum to swell as intestinal fluid flows into it, and a concomitant increase in hydrostatic pressure may provide an additional force for rectal water absorption. Our findings indicate that the rectum contributes greatly to high efficiency of intestinal water absorption by simultaneous absorption of ions and water.  相似文献   

14.
Extracts of intestinal epithelia from the European eel (Anguilla anguilla) stimulated cGMP production in the T84 human colon carcinoma cell line which suggested the presence of a guanylin-like peptide in this teleost fish. Degenerate oligonucleotide primers were subsequently used in RT-PCR resulting in the amplification, cloning, and sequencing of two cDNAs which represent possible 5' spliceoforms of an eel homologue of the mammalian peptide, guanylin. Northern blotting indicated that the main site of expression of the eel peptide is in the intestine with much lower signals also detected in the kidney. Intestinal expression of guanylin mRNA is up-regulated in both nonmigratory "yellow" and the more sexually mature, migratory "silver" eels following acclimation to the seawater environment. These results suggest that this peptide signalling system may play a role in osmoregulation in euryhaline teleost fish during migration between the marine and freshwater environments.  相似文献   

15.
This review focuses on recent developments in the molecular biology of ion and water transporter genes in fish and the potential role of their products in osmoregulation in both freshwater and seawater environments. In particular details of isoforms of various ATPases, co-transporters, exchangers and ion channels in the eel as well as other teleost species are described. Many of the teleost transporter isoforms discovered so far, appear to occur as twin or duplicate copies compared to their homologous counterparts in higher vertebrates, although these duplicate isoforms often have distinct tissue-specific and developmental stage-dependent expression patterns. The possible meaning of this information will be examined in relation to the fish genome duplication debate.  相似文献   

16.
Sulfate is required for proper cell growth and development of all organisms. We have shown that the renal sulfate transport system has dual roles in euryhaline eel, namely, maintenance of sulfate homeostasis and osmoregulation of body fluids. To clarify the physiological roles of sulfate transporters in teleost fish, we cloned orthologs of the mammalian renal sulfate transporters Slc13a1 (NaSi-1) and Slc26a1 (Sat-1) from eel (Anguilla japonica) and assessed their functional characteristics, tissue localization, and regulated expression. Full-length cDNAs coding for ajSlc13a1 and ajSlc26a1 were isolated from a freshwater eel kidney cDNA library. Functional expression in Xenopus oocytes revealed the expected sulfate transport characteristics; furthermore, both transporters were inhibited by mercuric chloride. Northern blot analysis, in situ hybridization, and immunohistochemistry demonstrated robust apical and basolateral expression of ajSlc13a1 and ajSlc26a1, respectively, within the proximal tubule of freshwater eel kidney. Expression was dramatically reduced after the transfer of eels from freshwater to seawater; the circulating sulfate concentration in eels was in turn markedly elevated in freshwater compared with seawater conditions (19 mM vs. 1 mM). The reabsorption of sulfate via the apical ajSlc13a1 and basolateral ajSlc26a1 transporters may thus contribute to freshwater osmoregulation in euryhaline eels, via the regulation of circulating sulfate concentration.  相似文献   

17.
As the intestine is an essential organ for fish osmoregulation, the intestinal hormone guanylins may perform major functions, especially in euryhaline fish such as eels and salmonids. From the intestine of an eel, we identified cDNAs encoding three distinct guanylin-like peptides. Based on the sequence of mature peptide and sites of production, we named them guanylin, uroguanylin, and renoguanylin. Renoguanylin is a novel peptide that possesses the characteristics of both guanylin and uroguanylin and was abundantly expressed in the kidney. By immunohistochemistry, guanylin was localized exclusively in goblet cells, but not enterochromaffin cells, of the intestine. After transfer of eels from fresh water to seawater, mRNA expression of guanylin and uroguanylin did not change for 3 h, but it increased after 24 h. The increase was profound (2-6-fold) after adaptation to seawater. The expression of uroguanylin was also up-regulated in the kidney of seawater-adapted eels, but that of renoguanylin was not so prominent as other guanylins in both intestine and kidney. Collectively, the novel eel guanylin family appears to have important functions for seawater adaptation, particularly long-term adaptation. Eel guanylin may be secreted from goblet cells into the lumen with mucus in response to increased luminal osmolality and act on the epithelium to regulate water and salt absorption.  相似文献   

18.
Marine teleost fish secrete bicarbonate (HCO3 ?) into the intestine to aid osmoregulation and limit Ca2+ uptake by carbonate precipitation. Intestinal HCO3 ? secretion is associated with an equimolar transport of protons (H+) into the blood, both being proportional to environmental salinity. We hypothesized that the H+-sensitive haemoglobin (Hb) system of seawater teleosts could be exploited via the Bohr and/or Root effects (reduced Hb-O2 affinity and/or capacity with decreasing pH) to improve O2 delivery to intestinal cells during high metabolic demand associated with osmoregulation. To test this, we characterized H+ equilibria and gas exchange properties of European flounder (Platichthys flesus) haemoglobin and constructed a model incorporating these values, intestinal blood flow rates and arterial–venous acidification at three different environmental salinities (33, 60 and 90). The model suggested red blood cell pH (pHi) during passage through intestinal capillaries could be reduced by 0.14–0.33 units (depending on external salinity) which is sufficient to activate the Bohr effect (Bohr coefficient of ?0.63), and perhaps even the Root effect, and enhance tissue O2 delivery by up to 42 % without changing blood flow. In vivo measurements of intestinal venous blood pH were not possible in flounder but were in seawater-acclimated rainbow trout which confirmed a blood acidification of no less than 0.2 units (equivalent to ?0.12 for pHi). When using trout-specific values for the model variables, predicted values were consistent with measured in vivo values, further supporting the model. Thus this system is an elegant example of autoregulation: as the need for costly osmoregulatory processes (including HCO3 ? secretion) increases at higher environmental salinity, so does the enhancement of O2 delivery to the intestine via a localized acidosis and the Bohr (and possibly Root) effect.  相似文献   

19.
Studies on the normal and parasitized rat intestine were used to investigate the effect of the tapeworm, Hymenolepis diminuta, on in vivo intestinal lumenal oxygen tensions, acid-base balance and mucosal absorption and accumulation of fluid and glucose.The lumenal bulk aqueous phase is considerable, well mixed and aerobic with an oxygen tension of 40–50 mm Hg. Neither the unstirred layers adjacent to the brush border membrane nor the area adjacent to the mucosa (“paramucosal lumen”) are significant barriers to the diffusion of oxygen from the blood to the intestinal lumen. In the uninfected distal ileum and colon anoxic conditions may occur in the central lumen, but, in the parasitized intestine fluid absorption is reduced and anoxic conditions do not occur. Increased H+ ion concentration in the parasitized intestine plays a role in increasing the availability of oxygen to intestinal helminths. Concomitant with the lower pH, the pCO2 in the lumen of the parasitized intestine was twice as high as that found in normal animals. The total CO2 in the parasitized intestine steadily decreased over a 3-h perfusion period, while in the normal intestine the total CO2 content increased after an initial fall during the first 30 min of perfusion. When the worms were removed, the ability of the intestine to restore normal acid-base balance was restored. Glucose and fluid absorption in both the infected and uninfected intestine were reduced by an increase in H+ ion concentration; both parameters were lower in the parasitized intestine than in the normal animals. Low pH increased fluid and glucose transport by H. diminuta.While the dry weights of both the parasitized and uninfected total small intestine and of the intestinal mucosa were the same, the wet weights were considerably different, indicating defective fluid balance in the infected intestine. Accumulation of glucose by the parasitized mucosa was greater than in control animals and decreased with an increase in H+ ion concentration. The glucose transport system in the parasitized gut was therefore affected at two levels, one at the brush border, where transport into the mucosa was decreased by lowering the pH, and secondly at the level of the basal and lateral membranes, where transport out of the mucosal tissue into the circulatory system was also reduced.The above results are discussed in terms of current widely accepted but erroneous concepts relating to the intestinal ‘microcosm’.  相似文献   

20.
The absorption of Cl(-) and water from ingested seawater in the marine fish intestine is accomplished partly through Cl(-)/HCO(3)(-) exchange. Recently, a H(+) pump (vacuolar-type H(+)-ATPase) was found to secrete acid into the intestinal lumen, and it may serve to titrate luminal HCO(3)(-) and facilitate further Cl(-)/HCO(3)(-) exchange, especially in the posterior intestine, where adverse concentration gradients could limit Cl(-)/HCO(3)(-) exchange. The H(+) pump is expressed in all intestinal segments and in gill tissue of gulf toadfish (Opsanus beta) maintained in natural seawater. After acute transfer of toadfish to 60 ppt salinity, H(+) pump expression increased 20-fold in the posterior intestine. In agreement with these observations was a fourfold-increased H(+)-ATPase activity in the posterior intestine of animals acclimated to 60 ppt salinity. Interestingly, Na(+)-K(+)-ATPase activity was elevated in the anterior intestine and gill, but not in the posterior intestine. Apical acid secretion by isolated intestinal tissue mounted in Ussing chambers fitted with pH-stat titration systems increased after acclimation to hypersalinity in the anterior and posterior intestine, titrating >20% of secreted bicarbonate. In addition, net base secretion increased in hypersalinity-acclimated fish and was ~70% dependent on serosal HCO(3)(-). Protein localization by immunohistochemistry confirmed the presence of the vacuolar-type H(+)-ATPase in the apical region of intestinal enterocytes. These results show that the H(+) pump, especially in the posterior intestine, plays an important role in hypersaline osmoregulation and that it likely has significant effects on HCO(3)(-) accumulation in the intestinal lumen and, therefore, the continued absorption of Cl(-) and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号