首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viruses play a significant role in nutrient cycling within the world’s oceans and are important agents of horizontal gene transfer, but little is know about their entrainment into sea ice or their temporal dynamics once entrained. Nilas, grease ice, pancake ice, first-year sea ice floes up to 78 cm in thickness, and under-ice seawater were sampled widely across Amundsen Gulf (ca. 71° N, 125° W71^\circ \hbox{N}, 125^\circ \hbox{W}) for concentrations of viruses and bacteria. Here, we report exceptionally high virus-to-bacteria ratios in seawater (45–340) and sea ice (93–2,820) during the autumn freeze-up. Virus concentrations ranged from 4.8 to 27 × 106  ml−1 in seawater and, scaled to brine volume, 5.5 to 170 × 107 ml−1 in sea ice. Large enrichment indices indicated processes of active entrainment from source seawater, or viral production within the ice, which was observed in 2 of 3 bottle incubations of sea ice brine at a temperature (-7°C-7^\circ\hbox{C}) and salinity ( 110 \permille110 \permille) approximating that in situ. Median predicted virus-to-bacteria contact rates (relative to underlying seawater) were greatest in the top of thick sea ice (66–78 cm: 130×) and lowest in the bottom of medium-thickness ice (33–37 cm: 23×). The great abundance of viruses and more frequent interactions between bacteria and viruses predicted in sea ice relative to underlying seawater suggest that sea ice may be a hot spot for virally mediated horizontal gene transfer in the polar marine environment.  相似文献   

2.
The distributions of bacterial populations in sea ice and underlying seawater were investigated on the continental shelf of the “Terre Adélie” area. A reference station was sampled weekly from January 1991 to January 1992. In winter, the survey included a minimum of six sampling layers: surface and bottom ice, brine, seawater from the interface, and at 0.5 and 2 m depth. In seawater, the total bacterial abundance ranged from 0.5 × 105 cells ml−1 in July to 6.0 × 105 cells ml−1 after ice break. Values reaching 2.5 × 106 cells ml−1 were recorded in the overlying ice cover. Mean cell volumes were twice as high in brine as in seawater. The saprophytic bacterial abundance ranged from 5.0 × 104 CFU (colony-forming units) ml−1 in some winter interface samples to less than 1.0 × 103 CFU ml−1 in most of the summer seawater samples. In sea ice a clear decreasing gradient for most of the studied bacterial parameters from the surface layers towards the bottom layer was found. The ice cover had a discernible impact on underlying seawater, but its influence was restricted to a limited interface layer.  相似文献   

3.
Electron-microscopic examination of water samples from the hypersaline Dead Sea showed the presence of high numbers of virus-like particles. Between 0.9 and 7.3 × 107 virus-like particles ml−1 were enumerated in October 1994 in the upper 20 m of the water column during the decline of a bloom of halophilic Archaea. Virus-like particles outnumbered bacteria by a factor of 0.9–9.5 (average 4.4). A variety of viral morphologies were detected, the most often encountered being spindle-shaped, followed by polyhedral and tailed phages. In addition, other types of particles were frequently found, such as unidentified algal scales, and virus-sized star-shaped particles. Water samples collected during 1995 contained low numbers of both bacteria and virus-like particles (1.9–2.6 × 106 and 0.8–4.6 × 107 ml−1 in April 1995), with viral numbers sharply declining afterwards (less than 104 ml−1 in November 1995–January 1996). It is suggested that viruses may play a major role in the decline of halophilic archaeal communities in the Dead Sea, an environment in which protozoa and other predators are absent. Received: February 5, 1997 / Accepted: May 24, 1997  相似文献   

4.
Denitrification activity and oxygen dynamics in Arctic sea ice   总被引:1,自引:0,他引:1  
Denitrification and oxygen dynamics were investigated in the sea ice of Franklin Bay (70°N), Canada. These investigations were complemented with measurements of denitrification rates in sea ice from different parts of the Arctic (69°N–85°N). Potential for bacterial denitrification activity (5–194 μmol N m−2 day−1) and anammox activity (3–5 μmol N m−2 day−1) in melt water from both first-year and multi-year sea ice was found. These values correspond to 27 and 7%, respectively, of the benthic denitrification and anammox activities in Arctic sediments. Although we report only potential denitrification and anammox rates, we present several indications that active denitrification in sea ice may occur in Franklin Bay (and elsewhere): (1) despite sea ice-algal primary production in the lower sea ice layers, heterotrophic activity resulted in net oxygen consumption in the sea ice of 1–3 μmol l−1 sea ice per day at in situ light conditions, suggesting that O2 depletion may occur prior to the spring bloom. (2) The ample organic carbon (DOC) and NO3 present in sea ice may support an active denitrification population. (3) Measurements of O2 conditions in melted sea ice cores showed very low bulk concentrations, and in some cases anoxic conditions prevailed. (4) Laboratory studies using planar optodes for measuring the high-resolution two-dimensional O2 distributions in sea ice confirmed the very dynamic and heterogeneous O2 distribution in sea ice, displaying a mosaic of microsites of high and low O2 concentrations. Brine enclosures and channels were strongly O2 depleted in actively melting sea ice, and anoxic conditions in parts of the brine system would favour anaerobic processes.  相似文献   

5.
Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.  相似文献   

6.
Abstract Bacterial abundance and bacterivorous protist abundance and activity were examined in ice-brine and water column communities of a cold temperate Japanese lagoon (Saroma-Ko Lagoon, Hokkaido, 44°N, 144°E), during the late winter phase of ice community development (February–March 1992). Bacterial abundance averaged 6 and 1 × 105 cells ml−1 in the ice-brine and plankton samples, respectively, and generally decreased during the sampling period. Bacterivorous protists, identified based on direct observation of short-term (<1 h) ingested fluorescently labeled bacteria (FLB) in their food vacuoles, were largely dominated by flagellates, mainly cryothecomonad-type and chrysomonad-like cells and small dinoflagellates of the genus Gymnodinium. Bacterivorous ciliates included mainly the prostomatid Urotricha sp., the scuticociliates Uronema and Cyclidium, the choreotrichs Lohmaniella oviformis and Strobilidium, and the hypotrich Euplotes sp. Protist abundance averaged 4 × 103 and 8.1 cells ml−1 in the ice-brine and 0.3 × 103 and 1.2 cells ml−1 in the plankton, for flagellates and ciliates, respectively. In contrast to bacteria, the abundance of protists generally increased throughout the sampling period, indicating predator–prey interactions. Protistan bacterivory, measured from the rate of FLB disappearance over 24 h, averaged 36% (ice) and 24% (plankton) of bacterial standing stock and exhibited the same seasonal pattern as for protist abundance. The calculated specific clearance (range, 2–67 nl protozoa−1 h−1) and ingestion (<1–26 particles protozoa−1 h−1) rates were likely to be minimal estimates and grazing impact may have been higher on occasion. Indications for the dependence of ``bacterivorous protists' on nonbacterial food items were also provided. Although alternative sources of bacterial loss are likely to be of importance, this study provides evidence for the potential of protozoan assemblages as bacterial grazers in both sea ice-brine biota and water column at the southern limit of sea ice in the northern hemisphere. Received: 30 July 1998; Accepted: 18 November 1998  相似文献   

7.
Heterotrophic bacterial and viral concentrations (range, 0.7 × 104 to 206.2 × 104 ml−1 and 0.05 × 106 to 128.9 × 106 ml−1, respectively) were determined in several Arctic freshwater environments, including lakes and glacial ecosystems (78.55°N, 11.56°E). Our bacteria and virus results mirrored trends seen in temperate lakes, with an average virus-to-bacteria ratio (VBR) of 13 (range, 7.3–25.2) and viral concentrations and DOC positively correlated with bacterial concentrations (R = 0.964, P < 0.01 and R = 0.813, P < 0.05, respectively). Lysogenic bacteria, determined by induction with Mitomycin C, were not detected in any of the investigated Arctic freshwater environments. Nutrient-addition experiments at in situ and at elevated temperatures were performed to elucidate the factors which influenced the bacterial growth and the virus–bacteria interactions in Arctic freshwaters. Our results suggest that multiple limiting factors interacted and constrained bacterial growth. Bacterial concentrations and doubling times increased at elevated temperatures and appeared to be co-stimulated by phosphorus and carbon. However, viral concentrations showed a lack of response to nutrient addition thus indicating an uncoupling between bacteria and viruses in the experiment.  相似文献   

8.
Seasonal Variation of Virioplankton in a Eutrophic Shallow Lake   总被引:5,自引:0,他引:5  
Lake Donghu is a typical eutrophic freshwater lake in which high abundance of planktonic viruses was recently revealed. In this study, seasonal variation of planktonic viruses were observed at three different trophic sites, hypertrophic, eutrophic, and mesotrophic regions, and the correlation between their abundances and other aquatic environmental components, such as bacterioplankton, chlorophyll a, burst size, pH, dissolved oxygen, and temperature, was analyzed for the period of an year. Virioplankton abundance detected by transmission electron microscope (TEM) ranged from 5.48 × 108 to 2.04 × 109 ml−1 in all the sites throughout the study, and the high abundances and seasonal variations of planktonic viruses were related to the trophic status at the sampled sites in Lake Donghu. Their annual mean abundances were, the highest at the hypertrophic site (1.23×109 ml−1), medium at the eutrophic site (1.19×109 ml−1), and the lowest at the mesotrophic site (1.02×109 ml−1). The VBR (virus-to-bacteria ratio) values were high, ranging from 49 to 56 on average at the three sampled sites. The data suggested that the high viral abundance and high VBR values might be associated with high density of phytoplankton including algae and cyanobacteria in this eutrophic shallow lake, and that planktonic viruses are important members of freshwater ecosystems.  相似文献   

9.
The porous medium of sea ice, a surface-rich environment characterized by low temperature and high salinity, has been proposed as a favorable site for horizontal gene transfer, but few measurements are available to assess the possibility of this mode of evolution in ice. Here, we report the first measurements of dissolved DNA in sea ice, measured by fluorescent dye staining of centrifugal-filter-concentrated samples of melted ice. Newly formed landfast and pack ice on the Canadian Arctic Shelf (ca. 71°N, 125°W) contained higher concentrations (scaled to volume of brine) of the major components of dissolved DNA—extracellular DNA and viruses—than the underlying seawater. Dissolved DNA was dominated by extracellular DNA in surface seawater (up to 95%), with viruses making up relatively larger fractions at depths below 100 m (up to 27%) and in thick sea ice (66–78 cm; up to 100%). Extracellular DNA was heterogeneously distributed, with concentrations up to 135 μg DNA L−1 brine detected in landfast sea ice, higher than previously reported from any marine environment. Additionally, extracellular DNA was significantly highly enriched at the base of ice of medium thickness (33–37 cm), suggestive of in situ production. Relative to underlying seawater, higher concentrations of extracellular DNA, viruses, and bacteria, and the availability of numerous surfaces for attachment within the ice matrix suggest that sea ice may be a hotspot for HGT in the marine environment.  相似文献   

10.
Databases on effects of chronic low-LET radiation exposure were analyzed by non-parametric statistical methods, to estimate the threshold dose rates above which radiation effects can be expected in vertebrate organisms. Data were grouped under three umbrella endpoints: effects on morbidity, reproduction, and life shortening. The data sets were compiled on a simple ‘yes’ or ‘no’ basis. Each data set included dose rates at which effects were reported without further details about the size or peculiarity of the effects. In total, the data sets include 84 values for endpoint “morbidity”, 77 values for reproduction, and 41 values for life shortening. The dose rates in each set were ranked from low to higher values. The threshold TDR5 for radiation effects of a given umbrella type was estimated as a dose rate below which only a small percentage (5%) of data reported statistically significant radiation effects. The statistical treatment of the data sets was performed using non-parametric order statistics, and the bootstrap method. The resulting thresholds estimated by the order statistics are for morbidity effects 8.1 × 10−4 Gy day−1 (2.0 × 10−4–1.0 × 10−3), reproduction effects 6.0 × 10−4 Gy day−1 (4.0 × 10−4–1.5 × 10−3), and life shortening 3.0 × 10−3 Gy day−1 (1.0 × 10−3–6.0 × 10−3), respectively. The bootstrap method gave slightly lower values: 2.1 × 10−4 Gy day−1 (1.4 × 10−4–3.2 × 10−4) (morbidity), 4.1 × 10−4 Gy day−1 (3.0 × 10−4–5.7 × 10−4) (reproduction), and 1.1 × 10−3 Gy day−1 (7.9 × 10−4–1.3 × 10−3) (life shortening), respectively. The generic threshold dose rate (based on all umbrella types of effects) was estimated at 1.0 × 10−3 Gy day−1.  相似文献   

11.
The impact of ice melting on bacterioplankton in the Arctic Ocean   总被引:2,自引:0,他引:2  
Global warming and the associated ice melt are leading to an increase in the organic carbon in the Arctic Ocean. We evaluated the effects of ice melt on bacterioplankton at 21 stations in the Greenland Sea and Arctic Ocean in the summer of 2007, when a historical minimum of Arctic ice coverage was measured. Polar Surface Waters, which have a low temperature and low salinity and originate mainly from melted ice, contained a very low abundance of bacteria (7.01 × 105 ± 2.20 × 105 cells ml−1); however, these bacteria had high specific bacterial production (2.40 ± 1.61 fmol C bac−1 d−1) compared to those in Atlantic Waters. Specifically, bacterioplankton in Polar Surface Waters showed a preference for utilizing carbohydrates and had significantly higher specific activities of the glycosidases assayed, i.e. β-glucosidase, xylosidase, arabinosidase and cellobiosidase. Furthermore, bacterioplankton in Polar Sea Waters showed preferential growth on some of the carbohydrates in the Biolog Ecoplate, such as d-cellobiose and N-acetyl-d-glucosamine. Our results suggest that climate change and the associated melting of Arctic ice might induce changes in bacterioplankton functional diversity by enhancing the turnover of carbohydrates. Since organic aggregates are largely composed of polysaccharides, higher solubilization of aggregates might modify the carbon cycle, weaken the biological pump and have biogeochemical and ecological implications for the future Arctic Ocean.  相似文献   

12.
Antarctic lakes are extreme ecosystems with microbially dominated food webs, in which viruses may be important in controlling community dynamics. A year long investigation of two Antarctic saline lakes (Ace and Pendant Lakes) revealed high concentrations of virus like particles (VLP) (0.20–1.26 × 108 ml−1), high VLP: bacteria ratios (maximum 70.6) and a seasonal pattern of lysogeny differing from that seen at lower latitudes. Highest rates of lysogeny (up to 32% in Pendant Lake and 71% in Ace Lake) occurred in winter and spring, with low or no lysogeny in summer. Rates of virus production (range 0.176–0.823 × 106 viruses ml−1 h−1) were comparable to lower latitude freshwater lakes. In Ace Lake VLP did not correlate with bacterial cell concentration or bacterial production but correlated positively with primary production, while in Pendant Lake VLP abundance correlated positively with both bacterial cell numbers and bacterial production but not with primary production. In terms of virus and bacterial dynamics the two saline Antarctic lakes studied appear distinct from other aquatic ecosystems investigated so far, in having very high viral to bacterial ratios (VBR) and a very high occurrence of lysogeny in winter.  相似文献   

13.
The use of clove oil as a potential anaesthetic for freshwater amphipods was examined at 20 °C. Individuals of Gammarus minus, a common species in southern Illinois, USA, spanning the entire body size range (4.3–14.3 mm), were used to test four anaesthetic concentrations varying from 1.48 × 10−4 ml ml−1 to 5.9 × 10−4 ml ml−1. Small-bodied individuals (mean size = 5.4 mm ± 0.27SE) were used to test additional concentrations, up to 14.7 × 10−4 ml ml−1, a 10-fold span, to identify potential lethal concentrations. At the lowest concentration, time to anaesthesia and recovery was constant at all body sizes. For the three next higher concentrations, time to anaesthesia decreased with increasing concentration while recovery time increased. Activity of amphipods was not affected by the ethanol carrier. In addition, activity did not differ between amphipods that had recovered from anaesthesia and unexposed amphipods. At clove oil concentrations of 8.84 × 10−4 ml ml−1 and 14.7 × 10−4 ml ml−1, mortality was 7 and 40%, respectively, indicating, that 5.9 × 10−4 ml ml−1 was a safe working concentration. No mortality was observed with Gammarus acherondytes, a federally endangered cave amphipod on which the protocol with 80 μl of stock was used in the field. The method enabled us to obtain information on the endangered amphipod which normally would have required the sacrifice of individuals. Thus, research can continue on species for which population numbers are low and for which basic information is needed to formulate meaningful recovery plans.  相似文献   

14.
Spatial distribution of planktonic viral particles (virioplankton) and mortality of heterotrophic bacteria caused by viral lysis were studied in the eutrophic Ivan’kovskoe and mesotrophic Uglichskoe reservoirs (the Upper Volga). During the summer peak of phytoplankton, the number of viral particles was higher in the Ivan’kovskoe Reservoir ((55.1 ± 9.5) × 106 ml−1 on average) than in the Uglichskoe Reservoir ((42.9 ± 5.1) × 106 ml−1 on average). The ratio of viral to bacterial abundances ranged from 2.5 to 7.0. The average number of mature phages in infected heterotrophic bacteria varied from 17 to 109 particles/cell. Most of the infected bacterial cells in the Ivan’kovskoe Reservoir were rod-shaped, and, in the Uglichskoe Reservoir, they were mainly vibrio-shaped. In the Ivan’kovskoe Reservoir, from 8.3 to 22.4% of planktonic bacteria were infected by phages, suggesting phage-induced mortality of bacterioplankton equal to 10.5–34.8% (19.1% on average) of the daily bacterial production. In the Uglichskoe Reservoir, from 9.4 to 33.5% of bacteria were phage-infected, suggesting phage-induced bacterial mortality of 13.7–40.2% (23.5% on average) of the daily bacterial production. The obtained results testify to an important role of autochthonous viruses in the regulation of bacterioplankton abundance and production in the reservoirs.  相似文献   

15.
Large-scale production has been the major obstacle to the success of many biopesticides. The spreading of microbial biocontrol agents against postharvest disease, as a safe and environmentally friendly alternative to synthetic fungicides, is quite dependent on their industrial mass production from low-cost raw materials. Considerable interest has been shown in using agricultural waste products and by-products from food industry as nitrogen and carbon sources. In this work, carob pulp aqueous extracts were used as carbon source in the production of the biocontrol agent Pantoea agglomerans PBC-1. Optimal sugar extraction was achieved at a solid/liquid ratio of 1:10 (w/v), at 25°C, for 1 h. Batch experiments were performed in shake flasks, at different concentrations and in stirred reactors at two initial inoculums concentrations, 106 and 107 cfu ml−1. The initial sugar concentration of 5 g l−1 allowed rapid growth (0.16 h−1) and high biomass productivity (0.28 g l−1 h−1) and was chosen as the value for use in stirred reactor experiments. After 22 and 32 h of fermentation the viable population reached was 3.2 × 109 and 6.2 × 109 cfu ml−1 in the fermenter inoculated at 106 cfu ml−1 and 2.7 × 109 and 6.7 × 109 cfu ml−1 in the bioreactor inoculated at 107 cfu ml−1. A 78% reduction of the pathogen incidence was achieved with PBC-1 at 1 × 108 cfu ml−1, grown in medium with carob extracts, on artificially wounded apples stored after 7 days at 25°C against P. expansum.  相似文献   

16.
Surface inoculation dose–response and time–response bioassays and detached fruit bioassays were conducted with a novel South African isolate of the Cryptophlebia leucotreta granulovirus (CrleGV-SA) against Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Noctuidae) neonate larvae. LC50 and LC90 values were estimated to be 4.095 × 103 and 1.185 × 105 OBs ml−1, respectively. LT50 and LT90 values were estimated to be 4 days 22 h and 7 days 8 h, respectively, categorising the virus as a fast or type 2 granulovirus. There was a conspicuous difference in behaviour between larvae on inoculated diet and untreated diet, resulting in a significant reduction in penetration of diet. Bioassays on detached Navel oranges revealed LC50 and LC90 values of 9.310 × 107 and 1.515 × 109 OBs ml−1, when using data on numbers of larvae per fruit rather than on numbers of infested fruit. Field trials will be conducted.  相似文献   

17.
In previous experiments, rates of picoplankton uptake into coral communities were controlled by sponge and ascidian biomass. Those experimental communities, however, had relatively few sponges and ascidians. In contrast, turbulent transport of particles into the momentum boundary layers can limit particle removal by layered, dense bivalve populations. In this study, the role of water velocity in controlling particulate nutrient-uptake by rubble communities was evaluated, in which the rubble was more completely covered by sponges and ascidians. Picoplankton uptake was proportional to concentration over a range of cell concentrations from 3.0 × 105 to 9.5 × 105 heterotrophic bacteria ml−1, 4.1 × 104 to 1.2 × 105 Synechococcus sp. ml−1 and 6.3 × 103 to 1.8 × 104 picoeukaryotes ml−1. The first-order uptake rate constants, normalized to sponge and ascidian biomass, were similar to previous experimental communities. Picoplankton uptake increased 1.6-fold over a 7-fold change in water velocity, 0.05–0.35 m s−1. This increase has been interpreted as a result of higher turbulent transport within the rough coral community (canopy), as indicated by a 1.6-fold increase in the bottom friction with increasing water velocity.  相似文献   

18.
Production rates, abundance, chlorophyll a (Chl a) concentrations and pigment composition were measured for three size classes (<2 μm, 2–11 μm and >11 μm) of phytoplankton from May to December 2000 in deep, mesotrophic, alpine lake Mondsee in Austria. The study focuses on differences among phytoplankton size fractions characterised by their surface area to volume ratio ([mml−1: mm3l−1]), pigment distribution patterns and photosynthetic rates. Particular attention was paid to autotrophic picophytoplankton (APP, fraction <2 μm) since this size fraction differed significantly from the two larger size fractions. Among the three fractions, APP showed the highest surface area to volume ratios and a high persistence in the pattern of lipophilic pigments between temporarily and spatially successive samples (about 80% similarity of pigment composition between samples over seasons and depths). The epilimnetic abundance of APP varied seasonally with an annual maximum of 180 × 10cells ml−1 in June (at 4–9 m). The minimum (October at 12 m) was more than an order of magnitude lower (4.9 × 103 ml−1). APP peaked during autumn and contributed between 24% and 42% to the total area-integrated Chl a (10–23 mg m−2) and between 16% and 58% to total area-integrated production (5–64 mg m−2  h−1) throughout seasons.  相似文献   

19.
Runnability problems caused by suspended bacteria in water using industries, have, in contrast to biofilms, received little attention. We describe here that Pseudoxanthomonas taiwanensis, a wide-spread and abundant bacterium in paper machine water circuits, aggregated dispersions of wood extractives ("pitch") and resin acid, under conditions prevailing in machine water circuits (109 cfu ml−1, pH 8, 45°C). The aggregates were large enough (up to 50 μm) so that they could be expected to clog wires and felts and to reduce dewatering of the fiber web. The Pseudoxanthomonas bacteria were negatively charged over a pH range of 3.2–10. Cationic polyelectrolytes of the types used as retention aids or fixatives to flocculate "anionic trash" in paper machines were effective in flocculating the Pseudoxanthomonas bacteria. The polyelectrolyte most effective for this purpose was of high molecular weight (7–8 × 106 g mol−1) and low charge density (1 meq g−1), whereas polyelectrolytes that effectively zeroed the electrophoretic mobility (i.e., neutralized the negative charge) of the bacterium were less effective in flocculating the bacteria. Based on the results, we concluded that the polyelectrolytes functioning by bridging mechanism, rather than by neutralization of the negative charge, may be useful as tools for reducing harmful deposits resulting from interaction of bacteria with wood extractives in warm water industry.  相似文献   

20.
Dey K  Roy P 《Biotechnology letters》2011,33(6):1101-1105
A Bacillus sp., capable of degrading chloroform, was immobilized in calcium alginate. The beads in 20 g alginate l−1 (about 2 × 108 cells/bead) could be re-used nine times for degradation of chloroform at 40 μM. The immobilized cells had a higher range of tolerance (pH 6.5–9 and 20–41°C) than free cells (pH 7–8.5 and 28–32°C). At 5 g alginate l−1, leakage of the cells from the beads was 0.51 mg dry wt ml−1. This species is the first reported Bacillus that can degrade chloroform as the sole carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号