共查询到20条相似文献,搜索用时 11 毫秒
1.
Wei Hua Ziji Liu Jie Zhu Chaojie Xie Tsomin Yang Yilin Zhou Xiayu Duan Qixin Sun Zhiyong Liu 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2009,119(2):223-230
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases worldwide in areas with cool or maritime climates. Wild emmer (Triticum turgidum var. dicoccoides) is an important potential donor of disease resistances and other traits for common wheat improvement. A powdery mildew resistance
gene was transferred from wild emmer accession G-303-1M to susceptible common wheat by crossing and backcrossing, resulting
in inbred line P63 (Yanda1817/G-303-1 M//3*Jing411, BC2F6). Genetic analysis of an F2 population and the F2:3 families developed from a cross of P63 and a susceptible common wheat line Xuezao showed that the powdery mildew resistance
in P63 was controlled by a single recessive gene. Molecular markers and bulked segregant analysis were used to characterize
and map the powdery mildew resistance gene. Nine genomic SSR markers (Xbarc7, Xbarc55, Xgwm148, Xgwm257, Xwmc35, Xwmc154, Xwmc257, Xwmc382, Xwmc477), five AFLP-derived SCAR markers (XcauG3, XcauG6, XcauG10, XcauG20, XcauG22), three EST–STS markers (BQ160080, BQ160588, BF146221) and one RFLP-derived STS marker (Xcau516) were linked to the resistance gene, designated pm42, in P63. pm42 was physically mapped on chromosome 2BS bin 0.75–0.84 using Chinese Spring nullisomic-tetrasomic, ditelosomic and deletion
lines, and was estimated to be more than 30 cM proximal to Xcau516, a RFLP-derived STS marker that co-segregated with the wild emmer-derived Pm26 which should be physically located in 2BS distal bin 0.84–1.00. pm42 was highly effective against 18 of 21 differential Chinese isolates of B. graminis f. sp. tritici. The closely linked molecular markers will enable the rapid transfer of pm42 to wheat breeding populations thus adding to their genetic diversity.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
W. Hua, Z. Liu, and J. Zhu contributed equally to this work. 相似文献
2.
Miaomiao Geng Jing Zhang Fuxiang Peng Xin Liu Xindi Lv Yangyang Mi Yinghui Li Feng Li Chaojie Xie Qixin Sun 《Molecular breeding : new strategies in plant improvement》2016,36(9):130
Powdery mildew, caused by Blumeria graminis f.sp. tritici (Bgt), is a destructive foliar disease of common wheat in areas with cool or maritime climates. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the progenitor of both domesticated tetraploid durum wheat and hexaploid bread wheat, harbors abundant genetic diversity related to resistance to powdery mildew that can be utilized for wheat improvement. An F2 segregating population was obtained from a cross between resistant bread wheat line 2L6 and susceptible cultivar Liaochun 10, after which genetic analysis of F2 and F2-derived F3 families was performed by inoculating plants with isolate Bgt E09. The results of this experiment demonstrated that powdery mildew resistance in 2L6, which was derived from wild emmer wheat accession IW30, was controlled by a single dominant gene, temporarily designated MLIW30. Nineteen SSR markers and two STS markers linked with MLIW30 were acquired by applying bulked segregant analysis. Finally, MLIW30 was located to the long arm of chromosome 4A and found to be flanked by simple sequence repeat markers XB1g2000.2 and XB1g2020.2 at 0.1 cM. Because no powdery mildew resistance gene in or derived from wild emmer wheat has been reported in wheat chromosome 4A, MLIW30 might be a novel Pm gene. 相似文献
3.
Liu Z Zhu J Cui Y Liang Y Wu H Song W Liu Q Yang T Sun Q Liu Z 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2012,124(6):1041-1049
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important foliar disease of wheat worldwide. Wild emmer (Triticum turgidum var. dicoccoides) is a valuable genetic resource for improving disease resistance in common wheat. A powdery mildew resistance gene conferring
resistance to B. graminis f. sp. tritici isolate E09 at the seedling and adult stages was identified in wild emmer accession IW170 introduced from Israel. An incomplete
dominant gene, temporarily designated MlIW170, was responsible for the resistance. Through molecular marker and bulked segregant analyses of an F2 population and F3 families derived from a cross between susceptible durum wheat line 81086A and IW170, MlIW170 was located in the distal chromosome bin 2BS3-0.84-1.00 and flanked by SSR markers Xcfd238 and Xwmc243. MlIW170 co-segregated with Xcau516, an STS marker developed from RFLP marker Xwg516 that co-segregated with powdery mildew resistance gene Pm26 on 2BS. Four EST–STS markers, BE498358, BF201235, BQ160080, and BF146221, were integrated into the genetic linkage map of MlIW170. Three AFLP markers, XPaacMcac,
XPagcMcta, XPaacMcag, and seven AFLP-derived SCAR markers, XcauG2, XcauG3, XcauG6, XcauG8, XcauG10, XcauG20, and XcauG25, were linked to MlIW170. XcauG3, a resistance gene analog (RGA)-like sequence, co-segregated with MlIW170. The non-glaucousness locus Iw1 was 18.77 cM distal to MlIW170. By comparative genomics of wheat–Brachypodium–rice genomic co-linearity, four EST–STS markers, CJ658408, CJ945509, BQ169830, CJ945085, and one STS marker XP2430, were developed and MlIW170 was mapped in an 2.69 cM interval that is co-linear with a 131 kb genomic region in Brachypodium and a 105 kb genomic region in rice. Four RGA-like sequences annotated in the orthologous Brachypodium genomic region could serve as chromosome landing target regions for map-based cloning of MlIW170. 相似文献
4.
Genqiao Li Tilin Fang Hongtao Zhang Chaojie Xie Hongjie Li Tsomin Yang Eviatar Nevo Tzion Fahima Qixin Sun Zhiyong Liu 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2009,119(3):531-539
Powdery mildew caused by Blumeria graminis f. sp. tritici is an important wheat disease in China and other parts of the world. Wild emmer (Triticum turgidum var. dicoccoides) is the immediate progenitor of cultivated tetraploid and hexaploid wheats and thus an important resource for wheat improvement.
Wild emmer accession IW2 collected from Mount Hermon, Israel, is highly resistant to powdery mildew at the seedling and adult
plant stages. Genetic analysis using an F2 segregating population and F2:3 families, derived from a cross between susceptible durum cultivar Langdon and wild emmer accession IW2, indicated that a
single dominant gene was responsible for the resistance of IW2. Bulked segregant and molecular marker analyses detected that
six polymorphic SSR, one ISBP, and three EST-STS markers on chromosome 3BL bin 0.63–1.00 were linked to the resistance gene.
Allelic variations of resistance-linked EST-STS marker BE489472 revealed that the allele was present only in wild emmer but absent in common wheat. Segregation distortion was observed for
the powdery mildew resistance allele and its linked SSR markers with preferential transmission of Langdon alleles over IW2
alleles. The resistance gene was introgressed into common wheat by backcrossing and marker-assisted selection. Since no designated
powdery mildew resistance gene has been found on chromosome 3BL, the resistance gene derived from wild emmer accession IW2
appears to be new one and was consequently designated Pm41.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
5.
Blanco A Gadaleta A Cenci A Carluccio AV Abdelbacki AM Simeone R 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2008,117(1):135-142
Powdery mildew, caused by Blumeria graminis f.sp. tritici, is one of the most important wheat diseases in many regions of the world. Triticum turgidum var. dicoccoides (2n=4x=AABB), the progenitor of cultivated wheats, shows particular promises as a donor of useful genetic variation for several traits, including disease resistances. The wild emmer accession MG29896, resistant to powdery mildew, was backcrossed to the susceptible durum wheat cultivar Latino, and a set of backcross inbred lines (BC(5)F(5)) was produced. Genetic analysis of F(3) populations from two resistant introgression lines (5BIL-29 x Latino and 5BIL-42 x Latino) indicated that the powdery mildew resistance is controlled by a single dominant gene. Molecular markers and the bulked segregant analysis were used to characterize and map the powdery mildew resistance. Five AFLP markers (XP43M32((250)), XP46M31((410)), XP41M37((100)), XP41M39((250)), XP39M32((120))), three genomic SSR markers (Xcfd07, Xwmc75, Xgwm408) and one EST-derived SSR marker (BJ261635) were found to be linked to the resistance gene in 5BIL-29 and only the BJ261635 marker in 5BIL-42. By means of Chinese Spring nullisomic-tetrasomic, ditelosomic and deletion lines, the polymorphic markers and the resistance gene were assigned to chromosome bin 5BL6-0.29-0.76. These results indicated that the two lines had the same resistance gene and that the introgressed dicoccoides chromosome segment was longer (35.5 cM) in 5BIL-29 than that introgressed in 5BIL-42 (less than 1.5 cM). As no powdery mildew resistance gene has been reported on chromosome arm 5BL, the novel resistance gene derived from var. dicoccoides was designated Pm36. The 244 bp allele of BJ261635 in 5BIL-42 can be used for marker-assisted selection during the wheat resistance breeding process for facilitating gene pyramiding. 相似文献
6.
Xie C Sun Q Ni Z Yang T Nevo E Fahima T 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2003,106(2):341-345
The powdery mildew resistance has been transferred from an Israeli wild emmer (Triticum dicoccoides) accession "G-305-M" into common wheat by crossing and backcrossing (G-305-M/781//Jing 411*3). Genetic analysis showed that the resistance was controlled by a single dominant gene at the seedling stage. Among the 102 pairs of SSR primers tested, four polymorphic microsatellite markers (Xpsp3029, Xpsp3071, Xpsp3152 and Xgwm570) from the long arm of chromosome 6A were mapped in a BC(2)F(3) population segregating for powdery mildew resistance and consisting of 167 plants. The genetic distances between the resistance gene and these four markers were: 0.6 cM to Xpsp3029, 3.1 cM to Xpsp3071, 11.2 cM to Xpsp3152 and 20.4 cM to Xgwm570, respectively. The order of these microsatellite loci agreed well with the established microsatellite map of chromosome arm 6AL. We concluded that the resistance gene was located on the long arm of chromosome 6AL. Based on the origin and chromosomal location of the gene, it is suggested that the resistance gene derived from "G-305-M" is a novel powdery mildew resistance gene and is temporarily designated MlG. 相似文献
7.
Perugini LD Murphy JP Marshall D Brown-Guedira G 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2008,116(3):417-425
Powdery mildew is an important foliar disease in wheat, especially in areas with a cool or maritime climate. A dominant powdery
mildew resistance gene transferred to the hexaploid germplasm line NC99BGTAG11 from T. timopheevii subsp. armeniacum was mapped distally on the long arm of chromosome 7A. Differential reactions were observed between the resistance gene in
NC99BGTAG11 and the alleles of the Pm1 locus that is also located on chromosome arm 7AL. Observed segregation in F2:3 lines from the cross NC99BGTAG11 × Axminster (Pm1a) demonstrate that germplasm line NC99BGTAG11 carries a novel powdery mildew resistance gene, which is now designated as Pm37. This new gene is highly effective against all powdery mildew isolates tested so far. Analyses of the population with molecular
markers indicate that Pm37 is located 16 cM proximal to the Pm1 complex. Simple sequence repeat (SSR) markers Xgwm332 and Xwmc790 were located 0.5 cM proximal and distal, respectively, to Pm37. In order to identify new markers in the region, wheat expressed sequence tags (ESTs) located in the distal 10% of 7AL that
were orthologous to sequences from chromosome 6 of rice were targeted. The two new EST-derived STS markers were located distal
to Pm37 and one marker was closely linked to the Pm1a region. These new markers can be used in marker-assisted selection schemes to develop wheat cultivars with pyramids of powdery
mildew resistance genes, including combinations of Pm37 in coupling linkage with alleles of the Pm1 locus. 相似文献
8.
Roi Ben-David Weilong Xie Zvi Peleg Yehoshua Saranga Amos Dinoor Tzion Fahima 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2010,121(3):499-510
The gene-pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbors a rich allelic repertoire for disease resistance. In the current study, we made use of tetraploid wheat mapping
populations derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16) to identify and map a
new powdery mildew resistance gene derived from wild emmer wheat. Initially, the two parental lines were screened with a collection
of 42 isolates of Blumeria graminis f. sp. tritici (Bgt) from Israel and 5 isolates from Switzerland. While G18-16 was resistant to 34 isolates, Langdon was resistant only to 5
isolates and susceptible to 42 isolates. Isolate Bgt#15 was selected to differentiate between the disease reactions of the two genotypes. Segregation ratio of F2-3 and recombinant inbreed line (F7) populations to inoculation with isolate Bgt#15 indicated the role of a single dominant gene in conferring resistance to Bgt#15. This gene, temporarily designated PmG16, was located on the distal region of chromosome arm 7AL. Genetic map of PmG16 region was assembled with 32 simple sequence repeat (SSR), sequence tag site (STS), Diversity array technology (DArT)
and cleaved amplified polymorphic sequence (CAPS) markers and assigned to the 7AL physical bin map (7AL-16). Using four DNA
markers we established colinearity between the genomic region spanning the PmG16 locus within the distal region of chromosome arm 7AL and the genomic regions on rice chromosome 6 and Brachypodium Bd1. A comparative analysis was carried out between PmG16 and other known Pm genes located on chromosome arm 7AL. The identified PmG16 may facilitate the use of wild alleles for improvement of powdery mildew resistance in elite wheat cultivars via marker-assisted
selection. 相似文献
9.
Miranda LM Murphy JP Marshall D Cowger C Leath S 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2007,114(8):1451-1456
A single gene controlling powdery mildew resistance was identified in the North Carolina germplasm line NC96BGTD3 (NCD3) using
genetic analysis of F2 derived lines from a NCD3 X Saluda cross. Microsatellite markers linked to this Pm gene were identified and their most likely order was Xcfd7, 10.3 cM, Xgdm43, 8.6 cM, Xcfd26, 11.9 cM, Pm gene. These markers and the Pm gene were assigned to chromosome 5DL by means of Chinese Spring Nullitetrasomic (Nulli5D-tetra5A) and ditelosomic (Dt5DL)
lines. A detached leaf test showed a distinctive disease reaction to six pathogen isolates among the NCD3 Pm gene, Pm2 (5DS) and Pm34 (5DL). An allelism test showed independence between Pm34 and the NCD3 Pm gene. Together, the tests provided strong evidence for the presence of a novel Pm gene in NCD3, and this gene was designated Pm35. 相似文献
10.
Judd J. Maxwell Jeanette H. Lyerly Christina Cowger David Marshall Gina Brown-Guedira J. Paul Murphy 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2009,119(8):1489-1495
Wheat powdery mildew is an economically important disease in cool and humid environments. Powdery mildew causes yield losses
as high as 48% through a reduction in tiller survival, kernels per head, and kernel size. Race-specific host resistance is
the most consistent, environmentally friendly and, economical method of control. The wheat (Triticum aestivum L.) germplasm line NC06BGTAG12 possesses genetic resistance to powdery mildew introgressed from the AAGG tetraploid genome
Triticum timopheevii subsp. armeniacum. Phenotypic evaluation of F3 families derived from the cross NC06BGTAG12/‘Jagger’ and phenotypic evaluation of an F2 population from the cross NC06BGTAG12/‘Saluda’ indicated that resistance to the ‘Yuma’ isolate of powdery mildew was controlled
by a single dominant gene in NC06BGTAG12. Bulk segregant analysis (BSA) revealed simple sequence repeat (SSR) markers specific
for chromosome 7AL segregating with the resistance gene. The SSR markers Xwmc273 and Xwmc346 mapped 8.3 cM distal and 6.6 cM proximal, respectively, in NC06BGTAG12/Jagger. The multiallelic Pm1 locus maps to this region of chromosome 7AL. No susceptible phenotypes were observed in an evaluation of 967 F2 individuals in the cross NC06BGTAG12/‘Axminster’ (Pm1a) which indicated that the NC06BGTAG12 resistance gene was allelic or in close linkage with the Pm1 locus. A detached leaf test with ten differential powdery mildew isolates indicated the resistance in NC06BGTAG12 was different
from all designated alleles at the Pm1 locus. Further linkage and allelism tests with five other temporarily designated genes in this very complex region will be
required before giving a permanent designation to this gene. At this time the gene is given the temporary gene designation
MlAG12. 相似文献
11.
Xu SS Khan K Klindworth DL Faris JD Nygard G 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,108(7):1221-1228
The glutenin and gliadin proteins of wild emmer wheat, Triticum turgidum L. var. dicoccoides, have potential for improvement of durum wheat (T. turgidum L. var. durum) quality. The objective of this study was to determine the chromosomes controlling the high molecular weight (HMW) glutenin subunits and gliadin proteins present in three T. turgidum var. dicoccoides accessions (Israel-A, PI-481521, and PI-478742), which were used as chromosome donors in Langdon durum-
T. turgidum var. dicoccoides (LDN-DIC) chromosome substitution lines. The three T. turgidum var. dicoccoides accessions, their respective LDN-DIC substitution lines, and a number of controls with known HMW glutenin subunits were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), urea/SDS-PAGE, and acid polyacrylamide gel electrophoresis (A-PAGE). The results revealed that all three T. turgidum var. dicoccoides accessions possess Glu-A1 alleles that are the same as or similar to those reported previously. However, each T. turgidum var. dicoccoides accession had a unique Glu-B1 allele. PI-478742 had an unusual 1Bx subunit, which had mobility slightly slower than the 1Ax subunit in 12% SDS-PAGE gels. The subunits controlled by chromosome 1B of PI-481521 were slightly faster in mobility than the subunits of the Glu-B1n allele, and the 1By subunit was identified as band 8. The 1B subunits of Israel-A had similar mobility to subunits 14 and 16. The new Glu-B1 alleles were designated as Glu-B1be in Israel-A, Glu-B1bf in PI-481521, and Glu-B1bg in PI-478742. Results from A-PAGE revealed that PI-481521, PI-478742, and Israel-A had eight, 12, and nine unique gliadin bands, respectively, that were assigned to specific chromosomes. The identified glutenin subunits and gliadin proteins in the LDN-DIC substitution lines provide the basis for evaluating their effects on end-use quality, and they are also useful biochemical markers for identifying specific chromosomes or chromosome segments of T. turgidum var. dicoccoides.Communicated by B. Friebe 相似文献
12.
Ozbek O Millet E Anikster Y Arslan O Feldman M 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2007,115(1):19-26
Genetic structure of natural populations of wild crop relatives has been the subject of many studies. Yet, most of them focused
on the assessment of spatial genetic diversity, while information on long-term variation, affected by yearly changes, has
been considered only in few cases. The present study aimed therefore, to estimate the spatio-temporal genetic variation in
populations of wild emmer wheat, the progenitor of domesticated wheat, and to assess the contribution of spatial versus temporal
factors to the maintenance of genetic variation in a population. Single spikes were collected in the years 1988 and 2002 from
plants that grew in the same sampling points, from six different habitats in the Ammiad conservation site, Eastern Galilee,
Israel. Seeds were planted in a nursery and DNA was extracted from each plant and analyzed by the AFLP method. Fourteen primer
combinations yielded 1,545 bands of which 50.0 and 48.8% were polymorphic in the years 1988 and 2002, respectively. Genetic
diversity was much larger within populations than between populations and the temporal genetic diversity was considerably
smaller than the spatial one. Nevertheless, population genetic structure may vary to some degree in different years, mainly
due to fluctuations in population size because of yearly rainfall variations. This may lead to predominance of different genotypes
in different years. Clustering the plants by their genetic distances grouped them according to their habitats, indicating
the existence of genotype-environment affinities. The significance of the results in relation to factors affecting the maintenance
of polymorphism in natural populations is discussed.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
13.
W. G. Xu C. X. Li L. Hu L. Zhang J. Z. Zhang H. B. Dong G. S. Wang 《Molecular breeding : new strategies in plant improvement》2010,26(1):31-38
The Chinese winter wheat cultivar Zhoumai 22 is highly resistant to powdery mildew. The objectives of this study were to map
a powdery mildew resistance gene in Zhoumai 22 using molecular markers and investigate its allelism with Pm13. A total of 278 F2 and 30 BC1 plants, and 143 F3 lines derived from the cross between resistant cultivar Zhoumai 22 and susceptible cultivar Chinese Spring were used for
resistance gene tagging. The 137 F2 plants from the cross Zhoumai 22/2761-5 (Pm13) were employed for the allelic test of the resistance genes. Two hundred and ten simple sequence repeat (SSR) markers were
used to test the two parents, and resistant and susceptible bulks. Subsequently, seven polymorphic markers were used for genotyping
the F2 and F3 populations. The results indicated that the powdery mildew resistance in Zhoumai 22 was conferred by a single dominant gene,
designated PmHNK tentatively, flanked by seven SSR markers Xgwm299, Xgwm108, Xbarc77, Xbarc84, Xwmc326, Xwmc291 and Xwmc687 on chromosome 3BL. The resistance gene was closely linked to Xwmc291 and Xgwm108, with genetic distances of 3.8 and 10.3 cM, respectively, and located on the chromosome bin 3BL-7-0.63-1.0 in the test with
a set of deletion lines. Seedling tests with seven isolates of Blumeria
graminis f. sp. tritici (Bgt) and allellic test indicated that PmHNK is different from Pm13, and Pm41 seems also to be different from PmHNK due to its origin from T. dicoccoides and molecular evidence. These results indicate that PmHNK is likely to be a novel powdery mildew resistance gene in wheat. 相似文献
14.
Runli He Zhijian Chang Zujun Yang Zongying Yuan Haixian Zhan Xiaojun Zhang Jianxia Liu 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2009,118(6):1173-1180
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele.
The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233–Xwmc41–Pm43–Xbarc11–Xgwm539–Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the
polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously
assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery
mildew resistance genes.
Runli He and Zhijian Chang contributed equally to this work. 相似文献
15.
Huang XQ Wang LX Xu MX Röder MS 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2003,106(5):858-865
Powdery mildew, caused by Erysiphe graminis DM f. sp. tritici (Em. Marchal), is one of the most important diseases of common wheat world-wide. Chinese wheat variety 'Fuzhuang 30' carries the powdery mildew resistance gene Pm5e and has proven to be a valuable resistance source of powdery mildew for wheat breeding. Microsatellite markers were employed to identify the gene Pm5e in a F(2) progeny from the cross 'Nongda 15' (susceptible) x 'Fuzhuang 30' (resistant). The gene Pm5e was mapped in the distal region of chromosome 7BL. Seven microsatellite markers were found to be linked to the gene Pm5e, of which two codominant markers Xgwm783 and Xgwm1267 were relatively close to Pm5e with a linkage distance of 11.0 cM and 6.6 cM, respectively. It is possible to use the 136-bp allele of Xgwm1267 in 'Fuzhuang 30' for marker-assisted selection during the wheat resistance breeding process for facilitation of gene pyramiding. The mapping information in the present study provides a starting point for fine mapping of the Pm5 locus and map-based cloning to clarify the molecular structure and function of the different alleles at the Pm5 locus. A microsatellite linkage map of chromosome 7B was constructed with 20 microsatellite loci, nine on the short arm and 11 on the long arm. This information will be very useful for further mapping of agronomically important genes of interest on chromosome 7B. 相似文献
16.
McIntosh RA Zhang P Cowger C Parks R Lagudah ES Hoxha S 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,123(3):359-367
Genetic suppression of disease resistance is occasionally observed in hexaploid wheat or in its interspecific crosses. The
phenotypic effects of genes moved to wheat from relatives with lower ploidy are often smaller than in the original sources,
suggesting the presence of modifiers or partial inhibitors in wheat, especially dilution effects caused by possible variation
at orthologous loci. However, there is little current understanding of the underlying genetics of suppression. The discovery
of suppression in some wheat genotypes of the cereal rye chromosome 1RS-derived gene Pm8 for powdery mildew resistance offered an opportunity for analysis. A single gene for suppression was identified at or near
the closely linked storage protein genes Gli-A1 and Glu-A3, which are also closely associated with the Pm3 locus on chromosome 1AS. The Pm3 locus is a complex of expressed alleles and pseudogenes embedded among Glu-A3 repeats. In the current report, we explain why earlier work indicated that the mildew suppressor was closely associated with
specific Gli-A1 and Glu-A3 alleles, and predict that suppression of Pm8 involves translated gene products from the Pm3 locus. 相似文献
17.
Chhuneja P Kumar K Stirnweis D Hurni S Keller B Dhaliwal HS Singh K 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2012,124(6):1051-1058
Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt), is one of the important foliar diseases of wheat that can cause serious yield losses. Breeding for cultivars with diverse
resources of resistance is the most promising approach for combating this disease. The diploid A genome progenitor species
of wheat are an important resource for new variability for disease resistance genes. An accession of Triticum boeoticum (AbAb) showed resistance against a number of Bgt isolates, when tested using detached leaf segments. Inheritance studies in a recombinant inbred line population (RIL), developed
from crosses of PM resistant T. boeoticum acc. pau5088 with a PM susceptible T. monococcum acc. pau14087, indicated the presence of two powdery mildew resistance genes in T. boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular marker data of the RIL population revealed that both powdery
mildew resistance genes are located on the long arm of chromosome 7A. Mapping was conducted using an integrated linkage map
of 7A consisting of SSR, RFLP, STS, and DArT markers. These powdery mildew resistance genes are tentatively designated as
PmTb7A.1 and PmTb7A.2. The PmTb7A.2 is closely linked to STS markers MAG2185 and MAG1759 derived from RFLP probes which are linked to powdery mildew resistance
gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1. The PmTb7A.1, flanked by a DArT marker wPt4553 and an SSR marker Xcfa2019 in a 4.3 cM interval, maps proximal to PmT7A.2. PmTb7A.1 is putatively a new powdery mildew resistance gene. The powdery mildew resistance genes from T. boeoticum are currently being transferred to cultivated wheat background through marker-assisted backcrossing, using T. durum as bridging species. 相似文献
18.
19.
Ruiqi Zhang Yali Fan Lingna Kong Zuojun Wang Jizhong Wu Liping Xing Aizhong Cao Yigao Feng 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(12):2613-2620
Key message
Pm62, a novel adult-plant resistance (APR) gene against powdery mildew, was transferred from D. villosum into common wheat in the form of Robertsonian translocation T2BS.2VL#5.Abstract
Powdery mildew, which is caused by the fungus Blumeria graminis f. sp. tritici, is a major disease of wheat resulting in substantial yield and quality losses in many wheat production regions of the world. Introgression of resistance from wild species into common wheat has application for controlling this disease. A Triticum durum-Dasypyrum villosum chromosome 2V#5 disomic addition line, N59B-1 (2n?=?30), improved resistance to powdery mildew at the adult-plant stage, which was attributable to chromosome 2V#5. To transfer this resistance into bread wheat, a total of 298 BC1F1 plants derived from the crossing between N59B-1 and Chinese Spring were screened by combined genomic in situ hybridization and fluorescent in situ hybridization, 2V-specific marker analysis, and reaction to powdery mildew to confirm that a dominant adult-plant resistance gene, designated as Pm62, was located on chromosome 2VL#5. Subsequently, the 2VL#5 (2D) disomic substitution line (NAU1825) and the homozygous T2BS.2VL#5 Robertsonian translocation line (NAU1823), with normal plant vigor and full fertility, were identified by molecular and cytogenetic analyses of the BC1F2 generation. The effects of the T2BS.2VL#5 recombinant chromosome on agronomic traits were also evaluated in the F2 segregation population. The results suggest that the translocated chromosome may have no distinct effect on plant height, 1000-kernel weight or flowering period, but a slight effect on spike length and seeds per spike. The translocation line NAU1823 has being utilized as a novel germplasm in breeding for powdery mildew resistance, and the effects of the T2BS.2VL#5 recombinant chromosome on yield-related and flour quality characters will be further assessed.20.
Chengcheng Tan Genqiao Li Christina Cowger Brett F. Carver Xiangyang Xu 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(5):1145-1152