首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
The apiculate yeasts are the species predominating the first stage of grape must alcoholic fermentation and are important for the production of desired volatile compounds. The aim of the present investigation was to establish a protocol for the enological selection of non-Saccharomyces strains directly isolated from a natural must fermentation during the tumultuous phase. At this scope, fifty Hanseniaspora uvarum isolates were characterized at strain level by employing a new combined PCR-based approach. One isolate representative of each identified strain was used in fermentation assays to assess strain-specific enological properties. The chemical analysis indicated that all the analyzed strains were low producers of acetic acid and hydrogen sulphide, whereas they showed fructophilic character and high glycerol production. Analysis of volatile compounds indicated that one strain could positively affect, during the alcoholic fermentation process, the taste and flavour of alcoholic beverages. The statistical evaluation of obtained results indicated that the selected autochthonous H. uvarum strain possessed physiological and technological properties which satisfy the criteria indicated for non-Saccharomyces wine yeasts selection. Our data suggest that the described protocol could be advantageously applied for the selection of non-Saccharomyces strains suitable for the formulation of mixed or sequential starters together with Saccharomyces cerevisiae.  相似文献   

2.
Inoculated fermentation by selected indigenous yeast strains from a specific location could provide the wine with unique regional sensory characteristics. The identification and differentiation of local yeasts are the first step to understand the function of yeasts and develop a better strain-selection program for winemaking. The indigenous yeasts in five grape varieties, Chardonnay, Cabernet Franc, Cabernet Sauvignon, Marselan, and Merlot cultivated in Xiangning, Shanxi, China were investigated. Eight species of seven genera including Aureobasidium pullulans, Candida zemplinina, Hanseniaspora uvarum, Hanseniaspora occidentalis, Issatchenkia terricola, Metschnikowia pulcherrima, Pichia kluyveri, and Saccharomyces cerevisiae were identified using Wallerstein Laboratory Nutrient medium with sequencing of the 26S rDNA D1/D2 domain. H. uvarum and S. cerevisiae were the predominant species, while most non-Saccharomyces species were present in the whole fermentation process at different levels among the grape varieties. The genotypes of S. cerevisiae from each microvinification were determined by using interdelta sequence analysis. The 102 isolates showed eight different genotypes, and genotype III was the predominant genotype found. The distribution of S. cerevisiae strains during the fermentation of Marselan was also studied. Six genotypes were observed among the 92 strains with different genotypes of competitiveness at different sampling stages. Genotype V demonstrated the potential for organizing starter strains and avoiding inefficient fermentation. In general, this study explored the yeast species in the grapes grown in Xiangning County and provided important information of relationship of local yeast diversity and its regional wine sensory characteristics.  相似文献   

3.
The spontaneous alcoholic fermentation of grape must is a complex microbiological process involving a large number of various yeast species, to which the flavour of every traditional wine is largely attributed. Whilst Saccharomyces cerevisiae is primarily responsible for the conversion of sugar to alcohol, the activities of various non-Saccharomyces species enhance wine flavour. In this study, indigenous yeast strains belonging to Metschnikowia pulcherrima var. zitsae as well as Saccharomyces cerevisiae were isolated and characterized from Debina must (Zitsa, Epirus, Greece). In addition, these strains were examined for their effect on the outcome of the wine fermentation process when used sequentially as starter cultures. The resulting wine, as analyzed over three consecutive years, was observed to possess a richer, more aromatic bouquet than wine from a commercial starter culture. These results emphasize the potential of employing indigenous yeast strains for the production of traditional wines with improved flavour.  相似文献   

4.
The aim of this research was the study of indigenous yeasts isolated from spontaneous fermentation of Inzolia grapes, one of the most widespread native white grapes in Sicily (Italy). The use of selective medium for the isolation and the screening for sulphur dioxide tolerance were useful for the first selection among 640 isolates. The yeasts characterized by high SO2 tolerance were identified at species level by restriction analysis of ITS region; although the majority of isolates were identified as S. cerevisiae, some non-Saccharomyces yeasts were found. Forty-seven selected yeasts, both S. cerevisiae and non-Saccharomyces yeasts, were characterized for genetic and technological diversity. The genetic polymorphism was evaluated by RAPD-PCR analysis, whereas the technological diversity was analyzed by determining the main secondary compounds in the experimental wines obtained by inoculating these yeasts. Both the molecular and metabolic profiles of selected yeasts were able to clearly discriminate S. cerevisiae from non-Saccharomyces yeasts. This research was useful for the constitution of a collection of selected indigenous yeast strains, including S. cerevisiae and non-Saccharomyces species possessing interesting enological traits. This collection represents a source of wild yeasts, among of which it is possible to select indigenous starters able to maintain the specific organoleptic characteristics of Inzolia wine.  相似文献   

5.
The aim of this work was to study the biodiversity of yeasts isolated from the autochthonous grape variety called “Uva di Troia”, monitoring the natural diversity from the grape berries to wine during a vintage. Grapes were collected in vineyards from two different geographical areas and spontaneous alcoholic fermentations (AFs) were performed. Different restriction profiles of ITS–5.8S rDNA region, corresponding to Saccharomyces cerevisiae, Issatchenkia orientalis, Metschnikowia pulcherrima, Hanseniaspora uvarum, Candida zemplinina, Issatchenkia terricola, Kluyveromyces thermotolerans, Torulaspora delbrueckii, Metschnikowia chrysoperlae, Pichia fermentans, Hanseniaspora opuntiae and Hanseniaspora guilliermondii, were observed. The yeast occurrences varied significantly from both grape berries and grape juices, depending on the sampling location. Furthermore, samples collected at the end of AF revealed the great predominance of Saccharomyces cerevisiae, with a high intraspecific biodiversity. This is the first report on the population dynamics of ‘cultivable’ microbiota diversity of “Uva di Troia” cultivar from the grape to the corresponding wine (“Nero di Troia”), and more general for Southern Italian oenological productions, allowing us to provide the basis for an improved management of wine yeasts (with both non-Saccharomyces and Saccharomyces) for the production of typical wines with desired unique traits. A certain geographical-dependent variability has been reported, suggesting the need of local based formulation for autochthonous starter cultures, especially in the proportion of the different species/strains in the design of mixed microbial preparations.  相似文献   

6.
Using a model system, the activities of α-L-arabinofuranosidase, β-glucosidase, and α-L-rhamonopyranosidase were determined in 32 strains of yeasts belonging to the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Hansenula, Kloeckera, Metschnikowia, Pichia, Saccharomyces, Torulaspora and Brettanomyces (10 strains); and seven strains of the bacterium Leuconostoc oenos. Only one Saccharomyces strain exhibited β-glucosidase activity, but several non-Saccharomyces yeast species showed activity of this enzyme. Aureobasidium pullulans hydrolyzed α-L-arabinofuranoside, β-glucoside, and α-L-rhamnopyranoside. Eight Brettanomyces strains had β-glucosidase activity. Location of enzyme activity was determined for those species with enzymatic activity. The majority of β-glucosidase activity was located in the whole cell fraction, with smaller amounts found in permeabilized cells and released into the growth medium. Aureobasidium pullulans hydrolyzed glycosides found in grapes. Received 02 February 1999/ Accepted in revised form 26 June 1999  相似文献   

7.
Saccharomyces and non-Saccharomyces yeast species from a winery located in Brazil were identified by ribosomal gene-sequencing analysis. A total of 130 yeast strains were isolated from grape surfaces and musts during alcoholic fermentation from Isabel, Bordeaux, and Cabernet Sauvignon varieties. Samples were submitted to PCR–RFLP analysis and genomic sequencing. Thirteen species were identified: Candida quercitrusa, Candida stellata, Cryptococcus flavescens, Cryptococcus laurentii, Hanseniaspora uvarum, Issatchenkia occidentalis, Issatchenkia orientalis, Issatchenkia terricola, Pichia kluyveri, Pichia guilliermondii, Pichia sp., Saccharomyces cerevisiae, and Sporidiobolus pararoseus. A sequential substitution of species during the different stages of fermentation, with a dominance of non-Saccharomyces yeasts at the beginning, and a successive replacement of species by S. cerevisiae strains at the final steps were observed. This is the first report about the yeast distribution present throughout the alcoholic fermentation in a Brazilian winery, providing supportive information for future studies on their contribution to wine quality.  相似文献   

8.
Yeast ecology, biogeography and biodiversity are important and interesting topics of research. The population dynamics of yeasts in several cellars of two Spanish wine-producing regions was analysed for three consecutive years (1996 to 1998). No yeast starter cultures had been used in these wineries which therefore provided an ideal winemaking environment to investigate the dynamics of grape-related indigenous yeast populations. Non-Saccharomyces yeast species were identified by RFLPs of their rDNA, while Saccharomyces species and strains were identified by RFLPs of their mtDNA. This study confirmed the findings of other reports that non-Saccharomyces species were limited to the early stages of fermentation whilst Saccharomyces dominated towards the end of the alcoholic fermentation. However, significant differences were found with previous studies, such as the survival of non-Saccharomyces species in stages with high alcohol content and a large variability of Saccharomyces strains (a total of 112, all of them identified as Saccharomyces cerevisiae) with no clear predominance of any strain throughout all the fermentation, probably related to the absence of killer phenotype and lack of previous inoculation with commercial strains.  相似文献   

9.
Acetaldehyde is relevant for wine aroma, wine color, and microbiological stability. Yeast are known to play a crucial role in production and utilization of acetaldehyde during fermentations but comparative quantitative data are scarce. This research evaluated the acetaldehyde metabolism of 26 yeast strains, including commercial Saccharomyces and non-Saccharomyces, in a reproducible resting cell model system. Acetaldehyde kinetics and peak values were highly genus, species, and strain dependent. Peak acetaldehyde values varied from 2.2 to 189.4 mg l−1 and correlated well (r 2 = 0.92) with the acetaldehyde production yield coefficients that ranged from 0.4 to 42 mg acetaldehyde per g of glucose in absence of SO2. S. pombe showed the highest acetaldehyde production yield coefficients and peak values. All other non-Saccharomyces species produced significantly less acetaldehyde than the S. cerevisiae strains and were less affected by SO2 additions. All yeast strains could degrade acetaldehyde as sole substrate, but the acetaldehyde degradation rates did not correlate with acetaldehyde peak values or acetaldehyde production yield coefficients in incubations with glucose as sole substrate.  相似文献   

10.
A fermentation system was continuously fed with sugar-cane syrup and operated with recycling of Saccharomyces cerevisiae cells at temperatures varying from 30 to 47°C. The aim of the present work was to obtain and study the colonies of isolates showing elongated cells of yeasts which were sporadically observed at the end of this continuous process. Based on a sequence of assays involving methods of classical taxonomy and RAPD-PCR, two groups of isolates showing characteristics of non-Saccharomyces yeasts were identified in the yeast population where S. cerevisiae was the dominant yeast. The largest group of non-Saccharomyces yeasts, resulting from a slow proliferation over the 2 months, reached a final level of 29.6% at the end of the process. RAPD-PCR profiles obtained for the isolates of this dominant non-Saccharomyces yeast indicated that they were isolates of Issatchenkia orientalis. Pichia membranifaciens was the only species of non-Saccharomyces yeast detected together with I. orientalis but at a very low frequency. The optimum temperature for ethanol formation shown by the isolate 195B of I. orientalis was 42°C. This strain also showed a faster ethanol formation and biomass accumulation than the thermotolerant strain of S. cerevisiae used as the starter of this fermentation process. Some isolates of I. orientalis were also able to grow better at 40°C than at 30°C on plates containing glycerol as carbon source. Yeasts able to grow and produce ethanol at high temperatures can extend the fermentation process beyond the temperature limits tolerated by S. cerevisiae.  相似文献   

11.
Since the yeast flora of Slovakian enology has not previously been investigated by culture-independent methods, this approach was applied to two most common cultivars Frankovka (red wine) and Veltlin (white wine), and complemented by cultivation. Model samples included grapes, initial must, middle fermenting must and must in the end-fermentation phase. The cultured isolates were characterized by length polymorphism of rDNA spacer two region using fluorescence PCR and capillary electrophoresis (f-ITS PCR), and some were identified by sequencing. The microbial DNA extracted directly from the samples without cultivation was analysed by f-ITS PCR, amplicons were cloned and sequenced. The use of universal fungal primers led to detection of both yeasts and filamentous fungi. The amplicon of highest intensity and present in all the samples corresponded to Hanseniaspora uvarum. Other species demonstrated by both approaches included Saccharomyces sp., Metschnikowia pulcherrima or M. chrysoperlae, Candida zemplinina, Cladosporium cladosporioides, Botryotinia fuckeliana, Pichia anomala, Candida railenensis, Cryptococcus magnus, Metschnikowia viticola or Candida kofuensis, Pichia kluyveri or Pichia fermentas, Pichia membranifaciens, Aureobasidium pullulans, Alternaria alternata, Erysiphe necator, Rhodotorula glutinis, Issatchenkia terricola and Debaryomyces hansenii. Endemism of Slovakian enological yeasts was suggested on the level of minor genetic variations of the known species and probably not accounting for novel species. The prevalence of H. uvarum over Saccharomyces sp. in the samples was indicated. This is the first culture-independent study of Slovakian enology and the first time f-ITS PCR profiling was used on wine-related microbial communities.  相似文献   

12.
Identification of yeasts isolated from apple juices of two cider houses (one located in a plain area and one in an alpine area) was carried out by culture-based method. Wallerstein Laboratory Nutrient Agar was used as medium for isolation and preliminary yeasts identification. A total of 20 species of yeasts belonging to ten different genera were identified using both BLAST algorithm for pairwise sequence comparison and phylogenetic approaches. A wide variety of non-Saccharomyces species was found. Interestingly, Candida railenensis, Candida cylindracea, Hanseniaspora meyeri, Hanseniaspora pseudoguilliermondii, and Metschnikowia sinensis were recovered for the first time in the yeast community of an apple environment. Phylogenetic analysis revealed a better resolution in identifying Metschnikowia and Moesziomyces isolates than comparative analysis using the GenBank or YeastIP gene databases. This study provides important data on yeast microbiota of apple juice and evidenced differences between two geographical cider production areas in terms of species composition.  相似文献   

13.
Summary The production of volatile compounds by 24 strains of Saccharomyces cerevisiae and one strain each of Candida apicola, C. famata, C. guilliermondii, Hanseniaspora occidentalis, Pichia subpelicullosa and Schizosaccharomyces pombe was evaluated with respect to the production of cacha?a. They were isolated from small cacha?a distilleries (27), industrial cacha?a distilleries (2) and one sugarcane alcohol distillery, and tested in synthetic medium for the production of acetaldehyde, ethyl acetate, propanol, isobutanol, isoamyl alcohol, acetic acid and glycerol. The Saccharomyces strains showed a narrow range of variation in the production of such compounds, near 50% of the average of each volatile compound concentration. Principal component analysis showed the separation of the strains into six groups, and acetic acid production was the variable of greatest impact in the differentiation of the strains. The strains of S. pombe formed a distinct group (Group 2), and the strains of C. apicola and H. occidentalis formed a joint group (Group 6) as did Sc13 and Sc4 (Group 4). Group 1 was formed exclusively of S. cerevisiae. The closest non-Saccharomyces strains were C. apicola and H. occidentalis, with a similarity index of about 0.95. The strain P. subpelliculosa showed general characteristics more similar to those of the S. cerevisiae strains than to the non-Saccharomyces strains.  相似文献   

14.
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function.  相似文献   

15.
Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected (“botrytized”) wine fermentations carried out at high (~30°C) and ambient (~20°C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by Saccharomyces. In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>106 cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of Candida. Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations.  相似文献   

16.
Acetaldehyde strongly binds to the wine preservative SO2 and, on average, causes 50–70 mg l?1 of bound SO2 in red and white wines, respectively. Therefore, a reduction of bound and total SO2 concentrations necessitates knowledge of the factors that affect final acetaldehyde concentrations in wines. This study provides a comprehensive analysis of the acetaldehyde production and degradation kinetics of 26 yeast strains of oenological relevance during alcoholic fermentation in must under controlled anaerobic conditions. Saccharomyces cerevisiae and non-Saccharomyces strains displayed similar metabolic kinetics where acetaldehyde reached an initial peak value at the beginning of fermentations followed by partial reutilization. Quantitatively, the range of values obtained for non-Saccharomyces strains greatly exceeded the variability among the S. cerevisiae strains tested. Non-Saccharomyces strains of the species C. vini, H. anomala, H. uvarum, and M. pulcherrima led to low acetaldehyde residues (<10 mg l?1), while C. stellata, Z. bailii, and, especially, a S. pombe strain led to large residues (24–48 mg l?1). Acetaldehyde residues in S. cerevisiae cultures were intermediate and less dispersed (14–34 mg l?1). Addition of SO2 to Chardonnay must triggered significant increases in acetaldehyde formation and residual acetaldehyde. On average, 0.33 mg of residual acetaldehyde remained per mg of SO2 added to must, corresponding to an increase of 0.47 mg of bound SO2 per mg of SO2 added. This research demonstrates that certain non-Saccharomyces strains display acetaldehyde kinetics that would be suitable to reduce residual acetaldehyde, and hence, bound-SO2 levels in grape wines. The acetaldehyde formation potential may be included as strain selection argument in view of reducing preservative SO2 concentrations.  相似文献   

17.
Aerobic organisms have devised several enzymatic and non-enzymatic antioxidant defenses to deal with reactive oxygen species (ROS) produced by cellular metabolism. To combat such stress, cells induce ROS scavenging enzymes such as catalase, peroxidase, superoxide dismutase (SOD) and glutathione reductase. In the present research, we have used a double staining technique of SOD and catalase enzymes in the same polyacrylamide gel to analyze the different antioxidant enzymatic activities and protein isoforms present in Saccharomyces and non-Saccharomyces yeast species. Moreover, we used a technique to differentially detect Sod1p and Sod2p on gel by immersion in NaCN, which specifically inhibits the Sod1p isoform. We observed unique SOD and catalase zymogram profiles for all the analyzed yeasts and we propose this technique as a new approach for Saccharomyces and non-Saccharomyces yeast strains differentiation. In addition, we observed functional correlations between SOD and catalase enzyme activities, accumulation of essential metabolites, such as glutathione and trehalose, and the fermentative performance of different yeasts strains with industrial relevance.  相似文献   

18.
One hundred and fifty-four yeast strains were isolated from grapes and musts of Uruguayan vineyards and wineries. Only thirty strains showed β-glucosidase activity in Esculin Glycerol Agar (EGA) solid medium. Twenty-one were non-Saccharomyces and nine were Saccharomyces cerevisiae strains. The objective of this study was to evaluate the suitability of Esculin Glycerol Agar (EGA) solid medium for screening β-glucosidase activity in native yeasts strains. Halo sizes measured in the EGA solid medium were correlated to the Glycosyl-Glucose (GG) indexes measured after fermentation of grape musts with each strain. The two S. cerevisiae strains with the best performance were selected for further fermentations on a Muscat Miel grape must, rich in bound monoterpenes. The levels of free linalool, hodiol I and geraniol increased significantly as compared to fermentation with a commercial wine yeast strain. These results show the suitability of this simple and economic medium to identify S. cerevisiae glucosidase producers with a potential impact on real winemaking conditions. On the other hand, great variability was found for the non-Saccharomyces strains, and this would demand further studies for each species. In conclusion, the use of EGA solid medium shows that the screening method is suitable for exploring the glucosidase activity of native strains of S. cerevisiae and shows good correlation with its real impact on free aroma compounds in the final wine.  相似文献   

19.
刺梨自然发酵过程中非酿酒酵母多样性分析   总被引:2,自引:0,他引:2  
【目的】分析刺梨果实自然发酵过程中非酿酒酵母菌群特征,为筛选优质刺梨非酿酒酵母提供参考。【方法】基于Illumina MiSeq高通量测序技术和WL营养琼脂鉴定培养基纯种分离技术,分析刺梨果实自然发酵1 d (F1)、3 d (F3)、5 d (F5)和15 d (F15) 4个阶段及YPD培养基富集培养样本中非酿酒酵母种群组成和多样性。【结果】高通量测序分析结果共获得182个OTUs (operational taxonomic units,OTUs),归属于81个属107个种;物种多样性分析结果表明,刺梨果实自然发酵前期,优势非酿酒酵母为汉逊酵母(Hanseniasporasp.)和伯顿丝孢毕赤酵母(Hyphopichiaburtonii),二者在样本F1中分别占42.59%和26.85%;随着自然发酵的不断进行,二者的比例逐渐降低,在第15天(F15),Hanseniaspora sp.和H. burtonii比例降低至7.73%和0.52%。相反,Pichia sporocuriosa和未培养的酵母,随着自然发酵不断进行所占比例逐渐增大,分别由F1中的0.23%和0.33%增至F15中的37.26%和32.62%。此外,采用WL营养琼脂鉴定培养基纯种分离和鉴定技术,从刺梨上分离到Hanseniasporasp.、H.burtonii、克鲁维毕赤酵母(Pichia kluyveri)、P. sporocuriosa和异常威克汉姆酵母(Wickerhamomyces anomalus) 5种类型的可培养非酿酒酵母。【结论】刺梨果实上存在着丰富的非酿酒酵母菌资源,研究刺梨自然发酵过程中非酿酒酵母多样性,为酵母资源开发和利用奠定基础。  相似文献   

20.
Summary Cachaça (sugarcane wine) was produced using different yeast strains, six being strains of Saccharomyces cerevisiae and one each of Candida apicola, Hanseniaspora occidentalis, Pichia subpelliculosa and Schizosaccharomyces pombe. The ethanol yields (%) of the non-Saccharomyces strains were similar to those of the Saccharomyces strains. The following determinations were carried out on the cachaça: acetaldehyde, ethyl acetate, propanol, isobutyl alcohol, isoamyl alcohol, volatile acidity. The cachaças showed variations in the levels of secondary compounds, but these variations did not result in differences (P ≤ 0.05) in the sensory attributes of aroma and flavour and overall impression. Of the volatile compounds quantified in the cachaças, only propanol showed a positive correlation (P ≤ 0.05) with the flavour attributes and overall impression. The S. pombe strain was considered inadequate for the production of cachaça. The cachaças were classified into five groups in an exploratory Hierarchical Cluster Analysis as a function of the volatile compounds. Principal Component Analysis showed that 93% of the variation (PC 1) occurred among the samples, and was explained by the individual volatile compounds and the total secondary compounds, with the exception of isoamyl alcohol only 7% (PC 2) was associated with the volatile acidity. The negative correlations shown between the volatile compounds of the cachaças and the ethanol content of the sugarcane wine, with the exception of acetaldehyde, showed that the variation in ethanol content of the sugarcane wine is an important factor for standardization of the ethanol/volatiles ratio and the beverage quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号