首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extractable activity of l-phenylalanine ammonia-lyase (EC 4.3.1.5) and the concentration of sugar esters of p-coumaric and ferulic acids in the hypocotyls of etiolated gherkin seedlings increase upon irradiation with white light. Treatment of intact seedlings with the phenylalanine ammonia-lyase inhibitors α-aminooxyacetic acid and l-α-aminooxy-β-phenylpropionic acid during illumination causes enhanced formation of the lyase and reduces the accumulation of hydroxycinnamic acids. Enzyme activity in excised hypocotyl segments floating on buffer increases in the dark as well as in the light, while hydroxycinnamic acids accumulate only in the light. Phenylalanine ammonia-lyase formation in the segments is inhibited by cinnamic acid and, to a lesser extent, p-coumaric acid, while it is slightly enhanced by caffeic acid and is not affected by ferulic acid.Aminooxyphenylpropionate dramatically promotes phenylalanine ammonialyase formation in the segments in darkness and light and prevents the accumulation of hydroxycinnamic acids in the light. Aminooxyphenylpropionate does not, however, affect the time course of apparent lyase formation and decay. Cinnamic acid, the product of the lyase reaction, antagonizes the effect of aminooxyphenylpropionate. It is proposed that the reaction product(s) are involved to some extent in the regulation of the pool of actively lyase in the hypocotyl tissue.  相似文献   

2.
Irradiation with ultraviolet light causes in the hypocotyl of dark-grown gherkin seedlings the partial conversion of trans-hydroxycinnamic acids to the cis-isomers. The trans-hydroxycinnamic acids inhibit the development of phenylalanine ammonia-lyase activity, and the transformation of these compounds to the much less inhibitory cis-isomers forms a ready explanation for the increase in phenylalanine ammonia-lyase activity in the hypocotyl of gherkin seedlings irradiated with ultraviolet light. Arguments are advanced that the increase in phenylalanine ammonia-lyase activity caused by irradiation with blue light is also (at least in part) initiated by trans-cis isomerisation of the hydroxycinnamic acids.  相似文献   

3.
Seven-day-old seedlings of cucumber (Cucumis sativus L.) cv. Wisconsin were treated with 0.1 mM solutions of cinnamic acid (ferulic and p-coumaric acids) and benzoic acid (p-hydroxybenzoic and vanillic acids) derivatives as stressors. The content of free and glucosylated soluble phenols and the activity of phenylalanine ammonia-lyase (E.C.4.3.1.5), phenol-β-glucosyltransferase (E.C.2.4.1.35.), and β-glucosidase (E.C.3.2.1.21.) in seedling roots as well as their length and fresh weight were examined. Changes in glucosylated phenolic content and phenol-β-glucosyltranspherase activity were observed under the influence of all phenolics applied. Treatment with ferulic and p-coumaric acids stimulated the increase of phenylalanine ammonia-lyase and β-glucosidase activity and slightly inhibited cucumber root growth.  相似文献   

4.
5.
Blue light mediates a transient increase in the extractable activity of phenylalanine ammonia-lyase from both cotyledons and hypocotyls of etiolated gherkin seedlings, but concurrent changes in extractable cinnamic acid 4-hydroxylase activity only occur in cotyledons. Excision, followed by incubation in the dark, also results in stimulation of the lyase activity in both tissues, but the hydroxylase activity is only stimulated in cotyledons, again concurrently with the lyase. Stimulated levels of hydroxycinnamic acid esters are, however, only formed following light treatment, indicating the presence of another light-sensitive step in their biosynthesis. Treatment of gherkin tissues with 2-aminooxyacetic acid or α-aminooxy-β-phenylpropionic acid inhibits phenylalanine ammonia-lyase activity in situ, reduces the accumulation of hydroxycinnamic acid esters and presumably reduces the endogenous cinnamic acid pool. This treatment increases extractable lyase activity and delays its peak in activity. In cotyledons, these changes in the lyase are associated with concurrent and similar changes in extractable hydroxylase activity, whilst in hypocotyls the hydroxylase is relatively unaffacted. The increase in phenylalanine ammonia-lyase activity following excision of cotyledons and hypocotyls is prevented by cinnamic acid; in cotyledons the hydroxylase is similarly affected, but after a longer lag. Thus whilst cinnamic acid can modify the extractable activity of the lyase, it cannot itself mediate changes in the extractable activity of the hydroxylase.  相似文献   

6.
An anionic potato peroxidase (EC 1.11.1.7, APP) thought to be involved in suberization after wounding was isolated from slices of Solanum tuberosum in order to elucidate the first steps of dehydrogenative polymerization between pairs of different hydroxycinnamic acids (FA, CafA, CA and SA) present in wound-healing plant tissues. Use of a commercial horseradish peroxidase (HRP)-H2O2 catalytic system gave the identical major products in these coupling reactions, providing sufficient quantities for purification and structural elucidation. Using an equimolar mixture of pairs of hydroxycinnamic acid suberin precursors, only caffeic acid is coupled to ferulic acid and sinapic acid in separate cross-coupling reactions. For the other systems, HRP and APP reacted as follows: (1) preferentially with ferulic acid in a reaction mixture that contained p-coumaric and ferulic acids; (2) with sinapic acid in a mixture of p-coumaric and sinapic acids; (3) with sinapic acid in a mixture of ferulic and sinapic acids; (4) with caffeic acid in a reaction mixture of p-coumaric and caffeic acids. The resulting products, isolated and identified by NMR and MS analysis, had predominantly beta-beta-gamma-lactone and beta-5 benzofuran molecular frameworks. Five cross-coupling products are described for the first time, whereas the beta-O-4 dehydrodimers identified from the caffeic acid and sinapic acid cross-coupling reaction are known materials that are highly abundant in plants. These reactivity trends lead to testable hypotheses regarding the molecular architecture of intractable suberin protective plant materials, complementing prior analysis of monomeric constituents by GC-MS and polymer functional group identification from solid-state NMR, respectively.  相似文献   

7.
Hydroxycinnamic acids associated with hypocotyl cell walls of dark-grown seedlings of Pinus pinaster Aiton were extracted with 1 N NaOH and identified by gas chromatography-mass spectrometry. The main hydroxycinnamic acid found was ferulic acid. Diferulic acid dehydrodimers were also found, with the 8,8-coupled isomer (compound 11) being the dehydrodiferulate present in the highest amount. However, the 5,5-coupled isomer, commonly referred to referred to as diferulic acid, was not detected. Two truxillic acids, 4-4[prime]-dihydroxy-3-3[prime]-dimethoxy-[alpha]-truxillic acids I and II, were tentatively identified. The 8,8-coupled dehydrodiferulic acid (compound 11) was the phenolic acid that showed the most conspicuous changes with hypocotyl age as well as along the hypocotyl axis. Peroxidase activity against ferulic acid was found in the apoplastic fluid as well as being ionically and covalently bound to the cell walls. The peroxidase activity increased with hypocotyl age as well as from the subapical toward the basal region of the hypocotyls. A key role in the cell-wall stiffening of 8,8 but not 5,5 dimerization of ferulic acid catalyzed by cell-wall peroxidases is proposed.  相似文献   

8.
Divalent Mn ions cause an increase in the level of phenylalanine ammonia-lyase in gherkin hypocotyls. With the exception of Mg ions, which had a small effect, no other metal ion has so far been found which could replace the Mn ion in this respect. Invertase and peroxidase were not significantly affected by the Mn treatment. The increase in phenylalanine ammonialyase activity is explained by the removal, under the influence of Mn ions, of hydroxycinnamic acids, which cause repression of phenylalanine ammonia-lyase synthesis and/or inactivation of phenylalanine ammonia-lyase. Arguments are advanced for the hypothesis that photochemical transformations of Mn complexes are involved in the photoinduction of phenylalanine ammonia-lyase in dark-grown gherkin seedlings.  相似文献   

9.
A cycloheximide-sensitive increase in the activity of phenylalanine ammonia-lyase (EC 4.3.1.5) occurs in Xanthium leaf disks exposed to light. Radioactive ammonia-lyase has been isolated by means of sucrose density gradient centrifugation and starch gel electrophoresis from disks fed l-isoleucine-U-(14)C or l-arginine-U-(14)C. The incorporation of radioactive amino acids into phenylalanine ammonia-lyase together with the inhibitory effects of cycloheximide indicate that the observed increase in enzyme activity involves the induction of lyase synthesis.The light-dependent synthesis of the ammonia-lyase is completely inhibited by 50 mum 3-(4-chlorophenyl)-1,1-dimethylurea (CMU) indicating that photosynthesis is involved. Only a trace quantity of some photosynthetic product must be needed because half light saturation occurs at very low intensity (ca. 30 ft-c). Exogenous carbohydrate is also required for continuing enzyme synthesis over a 72 hr period. But carbohydrate does not replace the photosynthetic requirement in darkness.Enzyme formed in light disappears rapidly from disks placed in the dark. The decay of ammonia-lyase activity follows first order kinetics. The half-life of the lyase ranged from 6 to 15 hr in leaf material used. Cyoloheximide inhibits the decay of lyase activity. Thus the maintenance of turnover in Xanthium leaf disks requires de novo synthesis of protein. That turnover, i.e., degradation as well as synthesis of lyase protein occurs is suggested by the apparent loss of radioactive ammonia-lyase from leaf disks placed in darkness. Light-induced synthesis coupled with rapid turnover can produce a diurnal fluctuation of ammonia-lyase activity in Xanthium leaf disks. Alternating periods of enzyme synthesis and degradation were observed in disks exposed to 24 hr cycles of light and dark. The average level of enzyme activity maintained in the tissue was directly related to the length of the light period. Induction of lyase synthesis was also observed in excised leaves and to a lesser extent in leaves of whole plants.  相似文献   

10.
The localization of phenylalanine ammonia-lyase [EC 4.3.1.5] within sweet clover (Melilotus alba) leaves was investigated. Apical buds and axillary leaves contained 15 to 30 times more enzyme activity than did mature leaves. Mesophyll protoplasts were prepared by digesting young leaves with Cellulysin and Macerase and were gently ruptured yielding intact chloroplasts. These chloroplast preparations exhibited neither phenylalanine ammonia-lyase nor o-coumaric acid O-glucosyltransferase activities. The general enzymic properties of sweet clover leaf phenylalanine ammonia-lyase were similar to those described for this enzyme isolated from other plant species. The conversion of l-phenylalanine to trans-cinnamic acid, which occurred at an optimum pH of about 8.7, was strongly inhibited by the metabolites trans-cinnamic and o-coumaric acids. In contrast, o-coumaric acid glucoside, coumarin, p-coumaric acid, and melilotic acid had no significant effect on the reaction rate.  相似文献   

11.
The contents and composition of alcohol soluble phenolic acids were studied during cell xylem growth in the course of wood annual increment formation in the stems of Scots pine. The cells of cambium zone, of two stages of expansion growth and the outset of secondary thickening zone (before lignification) were successively gathered from the stem segments of 25-old pine trees in the period of earlywood xylem formation with constant anatomical and histochemical control. The contents of free and bound forms of phenolic acids, isolated by 80% ethanol from tissues, as well as of their ethers and esters were calculated both per dry weight and per cell. The content and relation of the fractions and the composition of phenolic acid have been found to change significantly from cambium zone to the outset of tracheid secondary thickening. The character of the variations depends on a calculation method. According to the calculation per cell the amount of free and bound phenolic acids and in their composition of esters and especially ethers increased at the first step of expansion growth zone, decreased at the second one and rose again in the outset of secondary wall deposition. In dependence on the stage of cell development the pool of bound phenolic acids exceeded of free acid pool in 2-5 times. Sinapic and ferulic acids dominated in the composition of free hydroxycinnamic acids. The content and composition of hydroxycinnamic acids in ethers and esters depended on cell development phase. In cambium p-coumaric and sinapic acids were principal aglycons in ethers, at other stages these were sinapic and caffeic acids. The esters in cambium zone included essentially p-coumaric acid and at the other stages - sinapic and ferulic acids. At the first phase of growth benzoic acid was connected principally by ester bonds. The pool of these esters decreased from the first phase of growth to the outset of cell wall thickening and in proportion to this the level of free benzoic acid rose.  相似文献   

12.
Evidence is presented which demonstrates that both acid phosphatase (EC 3.1.3.2) and phenylalanine ammonia-lyase (EC 4.3.1.5) are synthesised in the hypocotyls of dark-grown gherkin seedlings. When blue light or cycloheximide treatment is given in the presence of 2H2 O the buoyant density of the lyase is observed to be lower than the appropriate dark control. This effect is not found for the phosphatase, the buoyant density of which is unaffected by blue ligh. These data appear to be best interpreted as a blue-light- and cycloheximide-mediated activation of previously synthesised, inactivated phenylalanine ammonia-lyase.  相似文献   

13.
Biosynthesis of both ascorbic acid (AsA) and peroxidase activity were induced by light in cv. Sultana grapevine leaves. Induced peroxidase activity mainly involved basic isoenzymes of pI 9.8 and 9.6 and catalyzed the oxidation of flavonoids like quercetin and kaempferol and derivatives of hydroxycinnamic acids such as ferulic and p-coumaric acids, but not AsA. However, the peroxidase-dependent oxidation of ferulic acid and quercetin was temporarily suppressed by AsA as long as it remained in the reaction medium. Kinetics and spectroscopic results indicated that AsA was oxidized to dehydroascorbic acid only in the presence of phenols or flavonoids, and did not interfere with the catalytic activity of the peroxidase. Ascorbate peroxidase isoenzymes (APx), whose activities are widely considered central for detoxification of H(2)O(2) in most plant cells, were not detected in grape leaves extracts. The significance of light stimulus on peroxidase activity and leaf AsA content is discussed in terms of a flavonoid-redox cycle proposed as an alternative system to detoxify H(2)O(2) in grapevine leaves.  相似文献   

14.
Light Control of Anthocyanin Biosynthesis in Zea Seedlings   总被引:2,自引:0,他引:2  
Evidence for involvement of two non-photosynthetic pigments in photoinduction of anthocyanin biosynthesis in the roots and mesocotyls of Zea mays L. seedlings is presented. Short (5 min), low energy (4.5 × 103 J m?2) fluences of red light neither induced anthocyanin synthesis nor enhanced phenylalanine ammonia-lyase activity in dark-grown maize seedlings. Little anthocyanin synthesis and no enhancement of phenylalanine ammonia-lyase activity was induced by continuous far-red light. Continuous white or blue light induced both anthocyanin synthesis and enhanced phenylalanine ammonia-lyase activity. These results show that phytochrome alone cannot induce anthocyanin synthesis in maize seedlings. However, a strong phytochrome mediation of white light induced pigment synthesis was demonstrated. This effect was not demonstrable with white light enhanced phenylalanine ammonia-lyase activity, indicating that phytochrome controls another step in anthocyanin biosynthesis.  相似文献   

15.
Chitosan-induced elicitation responses of dark-incubated Cocos nucifera (coconut) endosperm cell suspension cultures led to the rapid formation of phenylpropanoid derivatives, which essentially mimics the defense-induced biochemical changes in coconut palm as observed under in vivo conditions. An enhanced accumulation of p-hydroxybenzoic acid as the major wall-bound phenolics was evident. This was followed by p-coumaric acid and ferulic acid. Along with enhanced peroxidases activities in elicited lines, the increase in activities of the early phenylpropanoid pathway enzymes such as, phenylalanine ammonia lyase (PAL), p-coumaroyl-CoA ligase (4CL) and p-hydroxybenzaldehyde dehydrogenase (HBD) in elicited cell cultures were also observed. Furthermore, supplementation of specific inhibitors of PAL, C4H and 4CL in elicited cell cultures led to suppressed accumulation of p-hydroxybenzoic acid, which opens up interesting questions regarding the probable route of the biosynthesis of this phenolic acid in C. nucifera.  相似文献   

16.
Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation.  相似文献   

17.
In the current study, the hydroxycinnamic acids in silks of diverse maize inbred lines differing in Fusarium resistance were determined at several times after inoculation with Fusarium graminearum or sterile water as control. The main objective was to determine the possible relationship between the hydroxycinnamic acid changes in silks and ear rot resistance. Several changes in the cell-wall-bound hydroxycinnamic acid concentrations were observed after inoculation with F. graminearum, although these changes were not directly correlated with genotypic resistance to this fungus. Ester-bound ferulic acid decreased, probably due to degradation of hemicellulose by hydrolytic enzymes produced by Fusarium spp., while p-coumaric acid and diferulates showed slight increases that, in conjunction, did not result in delayed F. graminearum progression through the silks. It is important to note that the decrease of ferulic acid in the F. graminearum treatment was faster in susceptible than in resistant genotypes, suggesting a differential hemicellulose degradation in silk tissues. Therefore, the ability of the maize genotypes to slow down that process through hemicellulose structural features or xylanase inhibitors needs to be addressed in future studies.  相似文献   

18.
The content and composition of alcohol soluble phenolic acids (PhAs) were studied during cell xylem growth in course of wood annual increment formation in the trunks of Scots pine. Cells of the cambium zone, two stages of expansion growth, and outset of secondary thickening zone (before lignification) within the period of formation of early wood xylem were subsequently isolated from trunk segments of 25-year-old trees with constant anatomical and histochemical control. The amount of free and bound forms of phenolic acids extracted from tissues by 80% ethanol, as well as their ethers and esters, were calculated both per dry weight and per cells. The substantial alteration in content, proportion of fractions and composition of acids has been found between the cambium zone and the outset of secondary thickening of tracheids, and the character of variation depended on the calculation method. The amount of free and bound PhAs and esters and especially ethers calculated per cell had increased at the first stage of extension growth, reduced at the second, and increased in the outset of secondary wall deposition. The pool of bound acids was more than acids by 2–5 times depending on the stage of development of the cells. Sinapic and ferulic acids dominate among free hydroxycinnamic acids. The composition and the content of hydroxycinnamic acids in esters and ethers also depended on the stage of development of the cells. p-Coumaric and sinapic acids were the main aglycons in ethers in the cambium and sinapic and caffeic acids were in the other stages. The esters from cambium included mostly p-coumaric acid and those at other stages of development were sinapic and ferulic acids. The esters included benzoic acid at the first stages of growth. The pool of these esters decreased from the first phase of growth until the outset of cell wall thickening. The level of free benzoic acid increased respectively.  相似文献   

19.
The formation of coenzyme A thiol esters of cinnamic, p-coumaric, p-methoxy cinnamic, and ferulic acids was catalyzed by enzyme preparations from cell suspension cultures of leaf petioles from parsley (Petroselinum hortense Hoffm.). Of these acids, p-coumaric acid served as the most efficient substrate. Enzyme activity is markedly increased upon illumination with white light in a manner very similar to that in which the activities of a number of enzymes involved in flavone biosynthesis are stimulated by light. This strongly suggests that the formation of p-coumaroyl coenzyme A is part of this biosynthetic pathway.  相似文献   

20.
When dark-grown mustard seedlings are irradiated with far-red light the level of phenylalanine ammonia-lyase (EC 4.3.1.5) activity increases. After 2H2 O treatment phynlalanine amonia-lyase from seedlings irradiated with far-red light is density-labelled to a lesser extent than enzyme from dark-grown tissue. Theoretical arguments are advanced and data presented which show that this result cannot be explained in terms of an increase in de novo synthesis of phenylalanine ammonia-lyase and that the increase most likely involves activation of existing enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号