首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen deficiency in cotton plants (Gossypium hirsutum L.) considerably increased the sensitivity of stomata to water stress. At air temperatures of 27, 35, and ≥40 C, threshold potentials for complete stomatal closure were −10, −15, and −26 bars in N-deficient plants and −20, −20, and −30 bars in high-N plants, respectively. This three-way interaction among N supply, water potential, and air temperature was similar to that exerted on leaf expansion. The effects of N supply on stomatal behavior could not be explained on the basis of either osmotic or structural considerations. Rather, effects of N deficiency on mesophyll and stomata were independent and divergent. Stomatal behavior may impart a stress avoidance type of drought resistance to N-deficient plants.  相似文献   

2.
Cotton plants (Gossypium hirsutum L.) grown on deficient levels of N exhibited many of the characteristics associated with drought resistance. In N-deficient plants, leaf areas and leaf epidermal cells were smaller than at the same nodes in high-N plants. N-deficient leaves lost only about half as much water per unit change in water potential as did high-N leaves. In addition, they maintained a greater relative water content than high-N leaves at any given potential. Osmotic potentials (determined from pressure-volume curves) were slightly lower in N-deficient leaves. This difference in solute concentration was not from organic acids, which were almost unchanged. Sugar concentrations could account for only about 25% of the difference.  相似文献   

3.
Larqué-Saavedra, A., Rodriguez, M. T., Trejo, C. andNava, T. 1985. Abscisic acid accumulation and water relationsof four cultivars of Phaseolus vulgaris L. under drought.—J.exp. Bot 36: 1787–1792. Plants of four cultivars of Phaseolus vulgaris L. differingin drought resistance were grown in pots under greenhouse conditionsand prior to flowering water was withheld from the pots untilthe mid-day transpiration rate reached values below 1.0 µgH2O cm–2 s–1 (designated the ‘drought’stage). At this point leaves were harvested on 3 or 4 occasionsover 24 h to determine the abscisic acid (ABA) concentration,total water potential (), solute potential (1) and turgor potential(p). Results showed that values of , 1, and p differed between cultivarswhen they reached the ‘drought’ stage. The stomatalsensitivity to changes in and p, was as follows: Michoacán12A3 > Negro 150 Cacahuate 72 > Flor de Mayo. These datacorrelated well with the pattern of drought resistance reportedfor the cultivars. ABA accumulation at the ‘drought’ stage differedbetween cultivars at each sampling time, but overall differencesin ABA level between cultivars were not significant. ABA levelsdid not, therefore, correlate with the drought resistance propertiesreported for the cultivars. Results are discussed in relationto and hour of the day when bean samples were taken for ABAanalysis. Key words: Phaseolus vulgaris L., drought resistance, abscisic acid  相似文献   

4.
Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely to be a result of the interactions and modulations ámong root signals. As a stress signal, abscisic acid (ABA) plays a central role in root to shoot signaling, pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status, pH itself can be modified by several factors, among which the chemical compositions in the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH, more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastic pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se. The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots if a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles in the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal.  相似文献   

5.
Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely central role in root to shoot signaling. pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status. pH itself can be modified by several factors, among which the chemical compositions In the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH,more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastlc pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se.The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots If a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles In the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal.  相似文献   

6.
HENSON  I. E. 《Annals of botany》1983,52(2):247-255
The effects of a period of water stress (drought conditioning)on responses to a second (challenge) stress were examined inyoung vegetative rice (Oryza sativa L.) plants. Drought conditioningdid not affect the rate of subsequent stress development, nor,in a first experiment, did it influence relations between turgor(p) and total () leaf water potential. However, conditioningdid extend the range of p over which stomata remained open andsignificantly reduced the amount of ABA which accumulated inthe leaf at a given p. The change in stomatal behaviour (stomataladjustment) was quantitatively accounted for by the change inleaf ABA accumulation. The reduction in ABA accumulation due to conditioning did notinvolve a change in the potential capacity to produce ABA, asABA accumulation in partially dehydrated detached leaves wasnot reduced by conditioning. It is suggested that effects ofconditioning on leaf ABA content in the intact plant involvechanges in the rate of ABA export from the leaf. Oryza sativa L, rice, drought conditioning, stomata, water stress, abscisic acid  相似文献   

7.
Neill, S. J. and Horgan, R. 1985. Abscisic acid production andwater relations in wilty tomato mutants subjected to water deficiency.—J.exp. BoL 36: 1222-1231. Abscisic acid (ABA) concentrations were determined in shootsof Lycopersicon esculentum Mill. cv. Ailsa Craig wild type andthe three wilty mutants notabilis (not), flacca (flc) and sitiens(sit). ABA content of unstressed wild type leaves was 1.5 nmolg–1 fr. wt.; concentrations in not, flc and sit were 49,26 and 15% of this respectively. Gradual water stress was imposed on potted plants and a morerapid stress imposed on detached leaves. Leaves of the wildtype and not responded to both stresses by increasing theirABA content but leaves of flc and sit did not produce any moreABA under stress. Transpiration rates of flc plants were three times greater thanthose of the wild type and stomatal resistances correspondinglylower. Stomata of both flc and the wild type responded to darknessand externally supplied ABA by closing. However, only wild typestomata responded to water stress by dosing; those of flc leavesremained open until the leaves were severely desiccated. Thus,there was some relationship between the lack of stomatal responseto water stress and the failure to synthesize ABA. Key words: ABA, biosynthesis, stomata, water shortage, wilty mutants  相似文献   

8.
Radin JW 《Plant physiology》1981,67(1):115-119
Nitrogen nutrition exerted a strong effect on stomatal sensitivity to water stress in cotton. In well-watered plants grown with 0.31 millimolar N in the nutrient solution, stomata closed at a water potential of -9 bars even though the wilting point was below -15 bars. For each doubling of nutrient N level, the water potential for stomatal closure decreased by about 2 bars. Elevated intercellular CO2 concentrations caused only slight stomatal closure regardless of N nutrition. Exogenous abscisic acid (ABA) greatly increased stomatal sensitivity to elevated CO2 concentrations.  相似文献   

9.
10.
The decrease in diffusive conductance of a leaf exposed to waterstress or to exogenous abscisic acid (ABA) was smaller in leavesof sunflower plants (Helianthus annuus L. cv. NK285) that hadbeen grown in a phytotron in humid air than in leaves of sunflowersgrown outdoors. Stomata of the phytotron-grown plants were slowerto close after detachment of a leaf than those of the outdoorplants. When stomata closed rapidly, as they did in detachedleaves and after treatment with ABA, the extent of closure wasvaried over the leaf's surface, in particular in the case ofphytotron-grown plants, and the extent of the heterogeneitywas greater in the phytotrongrown plants than in the outdoorplants. When stomata closed gradually, for example, under conditionsof limited moisture in the soil, closure occurred uniformlyover leaves of plants of both types. The smaller decrease indiffusive conductance of leaves from phytotron-grown plantsafter treatment with ABA resulted from the presence of patcheson the surface in which stomata remained open. The smaller decreaseof diffusive conductance in the phytotron-grown plants underconditions of limited moisture in the soil resulted from theuniformly lower responsiveness of stomata on a leaf to the decreasein water potential. When estimates are made of the intercellularconcentration of CO2 (Ci) from gas-exchange measurements, heterogeneityin stomatal closure should be monitored when stomata close rapidly,in particular in plants grown in humid air, because heterogeneousstomatal closure can lead to overestimates of Ci. (Received April 18, 1994; Accepted May 25, 1995)  相似文献   

11.
Muskmelon (Cucumis melo L.) seeds are germinable 15 to 20 days before fruit maturity and are held at relatively high water content within the fruit, yet little precocious germination is observed. To investigate two possible factors preventing precocious germination, the inhibitory effects of abscisic acid and osmoticum on muskmelon seed germination were determined throughout development. Seeds were harvested at 5-day intervals from 30 to 65 days after anthesis (DAA) and incubated either fresh or after drying on factorial combinations of 0, 1, 3.3, 10, or 33 micromolar abscisic acid (ABA) and 0, −0.2, −0.4, −0.6, or −0.8 megapascals polyethylene glycol 8000 solutions at 30°C. Radicle emergence was scored at 12-hour intervals for 10 days. In the absence of ABA, the water potential (Ψ) required to inhibit fresh seed germination by 50% decreased from −0.3 to −0.8 megapascals between 30 and 60 DAA. The Ψ inside developing fruits was from 0.4 to 1.4 megapascals lower than that required for germination at all stages of development, indicating that the fruit Ψ is sufficiently low to prevent precocious germination. At 0 megapascal, the ABA concentration required to inhibit germination by 50% was approximately 10 micromolar up to 50 DAA and increased to >33 micromolar thereafter. Dehydration improved subsequent germination of immature seeds in ABA or low Ψ. There was a linear additive interaction between ABA and Ψ such that 10 micromolar ABA or −0.5 megapascal osmotic potential resulted in equivalent, and additive, reductions in germination rate and percentage of mature seeds. Abscisic acid had no effect on embryo solute potential or water content, but increased the apparent minimum turgor required for germination. ABA and osmoticum appear to influence germination rates and percentages by reducing the embryo growth potential (turgor in excess of a minimum threshold turgor) but via different mechanisms. Abscisic acid apparently increases the minimum turgor threshold, while low Ψ reduces turgor by reducing seed water content.  相似文献   

12.
Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg.

Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential.

Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4° above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects.

Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels.

Apparent photosynthesis of cotton leaves occasionally oscillated with variable amplitude and frequency. When soil water was adequate, photosynthesis was nearly proportional to light intensity, with some indication of higher rates at higher VPD's. As soil water decreased, photosynthesis first increased and then markedly decreased. Following reirrigation, photosynthesis rapidly recovered.

Respiration was slowed moderately by decreasing soil water but increased before watering. Respiration slowed with increasing leaf age only on leaves that were previously under high light intensity.

  相似文献   

13.
The flacca mutant in tomato (Lycopersicon esculentum Mill. cv Rheinlands Ruhm) was employed to examine the effects of a relatively constant diurnal water stress on leaf growth and water relations. As the mutant is deficient in abscisic acid (ABA) and can be phenotypically reverted to the wild type by applications of the growth substance, inferences can be made concerning the involvement of ABA in responses to water stress. Water potential and turgor were lower in leaves of flacca than of Rheinlands Ruhm, and were increased by ABA treatment. ABA decreased transpiration rates by causing stomatal closure and also increased the hydraulic conductance of the sprayed plants. Osmotic adjustment did not occur in flacca plants despite the daily leaf water deficits. Stem elongation was inhibited by ABA, but leaf growth was promoted. It is concluded that, in some cases, ABA may promote leaf growth via its effect on leaf water balance.  相似文献   

14.
逆境胁迫下植物体内脱落酸的生理功能和作用机制   总被引:11,自引:0,他引:11  
文章介绍逆境胁迫下植物体内ABA的生理功能和作用机制研究进展。  相似文献   

15.
We measured the content of hormones, the rate of growth, and some parameters of water regime (water content, transpiration, and stomatal and hydraulic conductivities) one and two days after wheat plant transfer from 10 to 1% Hoagland-Arnon nutrient medium. It was shown that, a day after dilution of nutrient solution, the content of various cytokinin forms decreased in the xylem sap, shoots, and roots. This decrease was most pronounced in the case of zeatin in the xylem sap and zeatin riboside in the mature zone of the first leaf. ABA was found to accumulate in shoots. A day after dilution of nutrient solution, we observed root elongation evidently induced by mineral nutrient deficiency, and this accelerated root growth was maintained later. Two days after dilution of nutrient solution, we observed the slowing of shoot weight accumulation, whereas root weight remained unchanged. Plant growth response could be related to ABA accumulation in shoots and cytokinin depletion in the whole plant. A reduced hydraulic conductivity and water content in the growing leaf zone was detected only two days after dilution of nutrient solution. Thus, changes in the growth rates and hormone contents could not result from disturbances in water regime induced by mineral nutrient deficiency.  相似文献   

16.
Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (±)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells.  相似文献   

17.
18.
19.
HENSON  I. E. 《Annals of botany》1982,50(1):9-24
Water stress was imposed by withholding water at an early vegetativestage from plants of two rice cultivars (IR20 and 63–83)grown in pots. As stress intensified the following sequenceof responses of the leaves was observed: (i) rise in abscisicacid (ABA) content, (ii) closure of stomata, (iii) initiationof leaf rolling. In both cultivars, turgor (p) declined linearly with total waterpotential () of the leaf. Bulk leaf ABA content increased linearlyas p declined, and attained twice the control (unstressed) levelfollowing a reduction in p of about 0.12 MPa. Stomatal conductance exhibited a sigmoidal relationship to p,declining abruptly when a particular ‘critical’p was reached (threshold response). The critical potentialsvaried considerably between experiments, but were closely correlatedwith control potentials and with the potentials at which ABAconcentration doubled relative to controls. Leaf rolling was initiated at s near to zero p. Increases inthe ratio of adaxial to abaxial conductance were associatedwith rolling. Variations in the above responses could be accounted for byvariations in the rate of stress development, which in termsof reduction ranged from 0.38 to 0.86 MPa day–1. Fastdrying rates resulted in: (a) reduced osmotic adjustment, (b)increased amounts of ABA in the leaf at a given level of orp, (c) an increase in the ABA concentration present at 50 percent stomatal closure, and (d) initiation of leaf rolling ata higher . Oryza sativa L., rice, water stress, stomata, leaf rolling, abscisic acid  相似文献   

20.
Henson, I. E. 1985. Solute accumulation and growth in plantsof pearl millet (Pennisetum americanum [L.] Leeke) exposed toabscisic acid or water stress.—J. exp. Bot. 36: 1889–1899.Experiments were conducted to investigate whether abscisic acid(ABA) elicits the accumulation of solutes and lowering of osmotic(solute) potential (2) which occurs in leaves of pearl millet(Pennisetum americanum [L.] Leeke) exposed to water stress.When (?)–ABA was injected into the base of the shoot of15–d–old plants, 2 of the fifth leaf was reducedsignificantly below controls 27–72 h after treatment.The reductions, however, were small (< 0.10 MPa) and wereaccompanied by a significant inhibition of shoot growth. Incontrast, no significant reduction in 2 or in growth occurredwhen the hormone was introduced directly into leaf five viaits mid–rib. ABA concentrations in leaf five were highshortly after direct injection, but declined to control levelswithin 48 h. Injecting ABA into the shoot base resulted in lowerleaf five ABA concentrations. Hence, the ABA concentration inthe leaf was not the most critical factor for its effect on2. ABA also reduced 2 of shoots when applied to seedlings 48h or 72 h after sowing via the roots. As with older plants,the effects of ABA on 2 were small ( 0–2 MPa) and wereaccompanied by inhibition of shoot growth. A water stress treatmentand an ABA treatment were compared. Although both treatmentsresulted in a similar degree of growth inhibition, the stresstreatment was much more effective than was ABA in reducing 2. Key words: Pennisetum americanum [L.], pearl millet, abscisic acid, water stress, osmotic  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号