首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two G protein subfamilies, Go(alpha) and Gi(alpha 2), were identified and localized immunohistochemically in the vomeronasal organ (VNO) of 5-month-old human fetuses. Immunoreactivity for Go(alpha) and Gi(alpha 2) was present in a subset of vomeronasal epithelial cells. Prominent immunoreactivity was observed in apical processes and their apical terminals facing onto the vomeronasal lumen. Nerve fibers associated with the VNO exhibited intense immunoreactivity for Go(alpha) and weak immunoreactivity for Gi(alpha 2). Since Go(alpha) and Gi(alpha 2) are characteristically expressed and coupled with putative pheromone receptors in rodent vomeronasal receptor neurons, the present results suggest the possibility that vomeronasal epithelial cells containing Go(alpha) and Gi(alpha 2) in human fetuses are chemosensory neurons.  相似文献   

3.
Although much evidence reveals sexually dimorphic processing of chemosensory cues by the brain, potential sex differences at more peripheral levels of chemoreception are understudied. In plethodontid salamanders, the volume of the vomeronasal organ (VNO) is almost twice as large in males as compared to females, both in absolute and relative size. To determine whether the structural sexual dimorphism in VNO volume is associated with sex differences in other peripheral aspects of chemosensation, we measured sex differences in chemo-investigation and in responsiveness of the VNO to chemosensory cues. Males and females differed in traits influencing stimulus access to VNO chemosensory neurons. Males chemo-investigated (“nose tapped”) neutral substrates and substrates moistened with female body rinses more than did females. Compared to females, males had larger narial structures (cirri) associated with the transfer of substrate-borne chemical cues to the lumen of the VNO. These sex differences in chemo-investigation and narial morphology likely represent important mechanisms for regulating sex differences in chemical communication. In contrast, males and females did not differ in responsiveness of VNO chemosensory neurons to male mental gland extract or female skin secretions. This important result indicates that although males have a substantially larger VNO compared to females, the male VNO was not more responsive to every chemosensory cue that is detected by the VNO. Future studies will determine whether the male VNO is specialized to detect a subset of chemosensory cues, such as female body rinses or female scent marks.  相似文献   

4.
Chemosensory stimuli and sex steroid hormones are both required for the full expression of social behaviors in many species. The terrestrial salamander, Plethodon shermani, is an emerging nonmammalian system for investigating the nature and evolution of pheromonal communication, yet little is known regarding the role of sex steroid hormones. We hypothesized that increased circulating androgen levels in male P. shermani enhance chemoreception through morphological, behavioral, and physiological mechanisms. Experimental elevation of plasma androgens increased development of cirri, morphological structures thought to enhance the transfer of chemosensory cues from the substrate to the vomeronasal organ (VNO). Elevated plasma androgens also increased expression of a chemo-investigatory behavior (nose tapping) and increased preference for some female-derived chemosensory cues. Male-produced courtship pheromones activated a large number of cells in the VNO as measured by the method of agmatine uptake. However, androgen levels did not affect the total number of vomeronasal cells activated by male-produced courtship pheromones. Future studies will determine whether androgens potentially modulate responsiveness of the VNO to female-derived (as opposed to male-derived) chemosensory cues.  相似文献   

5.
In mammals, the vomeronasal organ (VNO) contains chemosensory receptor cells that bind to pheromones and induce a variety of social and reproductive behaviors. It has been traditionally assumed that the human VNO (Jacobson's organ) is a vestigial structure, although recent studies have shown minor evidence for a structurally intact and possibly functional VNO. The presence and function of the human VNO remains controversial, however, as pheromones and VNO receptors have not been well characterized. In this study we screened a human Bacterial Artificial Chromosome (BAC) library with multiple primer sets designed from human cDNA sequences homologous to mouse VNO receptor genes. Utilizing these BAC sequences in addition to mouse VNO receptor sequences, we screened the High Throughput Genome Sequence (HTGS) database to find additional human putative VNO receptor genes. We report the identification of 56 BACs carrying 34 distinct putative VNO receptor gene sequences, all of which appear to be pseudogenes. Sequence analysis indicates substantial homology to mouse V1R and V2R VNO receptor families. Furthermore, chromosomal localization via FISH analysis and RH mapping reveal that the majority of the BACs are localized to telomeric and centromeric chromosomal localizations and may have arisen through duplication events. These data yield insight into the present state of pheromonal olfaction in humans and into the evolutionary history of human VNO receptors.  相似文献   

6.
Chemical cues from male voles activate reproduction in female prairie voles (Microtus ochrogaster). Twelve hours of contact with a male, followed by exposure to his soiled bedding for 2 days, is sufficient to initiate follicular maturation and induce uterine hypertrophy. Our recent work indicates that the chemosensory vomeronasal organ (VNO) can mediate this response. Here, we examined whether other sensory systems can acquire the ability to activate female reproduction as a result of learning or experience. To explore this issue, the VNO was removed (VNX) from nulliparous and primiparous females who were then exposed to cues from males. In Experiment 1, we found that nulliparous VNX females had lower uterine and ovarian weights than did sham-operated females. In Experiment 2, we determined that sexual experience did not ameliorate the reproductive deficits normally induced by VNX. The present results contrast with those of previous studies suggesting that males of some rodent species, when allowed reproductive experience prior to VNX, can utilize other sensory systems to mediate subsequent reproductive responses. We conclude that the role of the VNO in transducing chemosensory information is crucial for coordinating the reproductive efforts of male and female prairie voles.  相似文献   

7.
Hui Yang  Peng Shi 《遗传学报》2010,37(12):771-778
Formyl peptide receptors (FPRs) were observed to expand in rodents and were recently suggested as candidate vomeronasal chemo-sensory receptors. Since vomeronasal chemosensory receptors usually underwent positive selection and evolved concordantiy with the vomeronasal organ (VNO) morphology, we surveyed FPRs in primates in which VNO morphology is greatly diverse and thus it would provide us a clearer view of VNO-FPRs evolution. By screening available primate genome sequences, we obtained the FPR repertoires in representative primate species. As a result, we did not find FPR family size expansion in primates. Further analyses showed no evolutionary force variance between primates with or without VNO structure, which indicated that there was no functional divergence among primates FPRs. Our results suggest that primates lack the VNO-specific FPRs and the FPR expansion is not a common phenomenon in mammals outside rodent lineage, regardless of VNO complexity.  相似文献   

8.
9.
The vomeronasal organ (VNO) is a chemosensory structure of the nasal septum found in most tetrapods. Although potential behavioural correlates of VNO function have been shown in two of the three elephant species, its morphology in Loxodonta africana has not been studied. The development of the VNO and its associated structures in the African elephant are described in detail using serially sectioned material from fetal stages. The results show that many components of the VNO complex (e.g. neuroepithelium, receptor‐free epithelium, vomeronasal nerve, paravomeronasal ganglia, blood vessels, vomeronasal cartilage) are well developed even in a 154‐day‐old fetus, in which the VNO opens directly into the oral cavity with only a minute duct present. However, the vomeronasal glands and their ducts associated with the VNO were developed only in the 210‐day‐old fetus. Notably, in this fetus, the vomeronasal–nasopalatine duct system had acquired a pathway similar to that described in the adult Asian elephant; the VNOs open into the oral cavity via the large palatal parts of the nasopalatine ducts, which are lined by a stratified squamous epithelium. The paired palatal ducts initially coursed anteriorly at an angle of 45° from the oral recess and/or the oral cavity mucosa, and merged into the vomeronasal duct. This study confirms the unique characteristics of the elephant VNO, such as its large size, the folded epithelium of the VNO tube, and the dorsomedial position of the neuroepithelium. The palatal position and exclusive communication of the VNO with the oral cavity, as well as the partial reduction of the nasopalatine duct, might be related to the unique elephantid craniofacial morphogenesis, especially the enormous growth of the tusk region, and can be seen as autapomorphies.  相似文献   

10.
The vomeronasal organ (VNO) is a sensory organ that influences social and/or reproductive behavior and, in many cases, the survival of an organism. The VNO is believed to mediate responses to pheromones; however, many mechanisms of signal transduction in the VNO remain elusive. Here, we examined the expression of proteins involved in signal transduction that are found in the main olfactory system in the VNO. The localization of many signaling molecules in the VNO is quite different from those in the main olfactory system, suggesting differences in signal transduction mechanisms between these two chemosensory organs. Various signaling molecules are expressed in distinct areas of VNO sensory epithelium. Interestingly, we found the expressions of groups of these signaling molecules in glandular tissues adjacent to VNO, supporting the physiological significance of these glandular tissues. Our finding of high expression of signaling proteins in glandular tissues suggests that neurohumoral factors influence glandular tissues to modulate signaling cascades that in turn alter the responses of the VNO to hormonal status.  相似文献   

11.
The vomeronasal organ (VNO) is a chemosensory organ specialized in the detection of pheromones in higher vertebrates. In mouse and rat, two gene superfamilies, V1r and V2r vomeronasal receptor genes, are expressed in sensory neurons whose cell bodies are located in, respectively, the apical and basal layers of the VNO epithelium. Here, we report that neurons of the basal layer express another multigene family, termed H2-Mv, representing nonclassical class I genes of the major histocompatibility complex. The nine H2-Mv genes are expressed differentially in subsets of neurons. More than one H2-Mv gene can be expressed in an individual neuron. In situ hybridization with probes for H2-Mv and V2r genes reveals complex and nonrandom combinations of coexpression. While neural expression of Mhc class I molecules is increasingly being appreciated, the H2-Mv family is distinguished by variegated expression across seemingly similar neurons and coexpression with a distinct multigene family encoding neural receptors. Our findings suggest that basal vomeronasal sensory neurons may consist of multiple lineages or compartments, defined by particular combinations of V2r and H2-Mv gene expression.  相似文献   

12.
The vomeronasal system consists of a peripheral organ and the connected central neuronal networks. The central connections are sexually dimorphic in rodents, and in some species, parameters of the vomeronasal organ (VNO) vary with sex, hormonal exposure, body size and seasonality. The VNO of the dasyurid marsupial mouse, Antechinus subtropicus is presumed to be functional. The unusual life history (male semelparity) is marked by distinct seasonality with differences in hormonal environments both between males and females, and in males at different time points. Body size parameters (e.g., length, weight) display sexual dimorphism and, in males, a pronounced weight gain before breeding is followed by a rapid decline during the single, short reproductive season. VNO morphometry was investigated in male and female A. subtropicus to identify possible life cycle associated activity. The overall length of the VNO is positively correlated with the size of the animal. The amount of sensory epithelium exhibits a negative correlation, decreasing with increasing size of the animal. The effects of sex and breeding condition are not obvious, although they do suggest that sensory vomeronasal epithelium mass declines in the breeding period. The VNO may be more important in A. subtropicus before breeding when it may participate in synchronising reproduction and in the development of the male stress response. J. Morphol. 277:1517–1530, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
The vomeronasal organ (VNO) is a chemosensory subsystem found in the nose of most mammals. It is principally tasked with detecting pheromones and other chemical signals that initiate innate behavioural responses. The VNO expresses subfamilies of vomeronasal receptors (VRs) in a cell-specific manner: each sensory neuron expresses just one or two receptors and silences all the other receptor genes. VR genes vary greatly in number within mammalian genomes, from no functional genes in some primates to many hundreds in rodents. They bind semiochemicals, some of which are also encoded in gene families that are coexpanded in species with correspondingly large VR repertoires. Protein and peptide cues that activate the VNO tend to be expressed in exocrine tissues in sexually dimorphic, and sometimes individually variable, patterns. Few chemical ligand–VR–behaviour relationships have been fully elucidated to date, largely due to technical difficulties in working with large, homologous gene families with high sequence identity. However, analysis of mouse lines with mutations in genes involved in ligand–VR signal transduction has revealed that the VNO mediates a range of social behaviours, including male–male and maternal aggression, sexual attraction, lordosis, and selective pregnancy termination, as well as interspecific responses such as avoidance and defensive behaviours. The unusual logic of VR expression now offers an opportunity to map the specific neural circuits that drive these behaviours.  相似文献   

14.
Male urinary pheromones modulate behavioral and neuroendocrine function in mice after being detected by sensory neurons in the vomeronasal organ (VNO) neuroepithelium. We used nuclear Fos protein immunoreactivity (Fos-IR) as a marker of changes in neuronal activity to examine the processing of male pheromones throughout the VNO projection pathway to the hypothalamus. Sexually naive male and female Balb/c mice were gonadectomized and treated daily with estradiol benzoate (EB) or oil vehicle for 3 weeks. Subjects were then exposed to soiled bedding from gonadally intact Balb/c males or to clean bedding for 90 min prior to sacrifice and processing of their VNOs and forebrains for Fos-IR. Male pheromones induced similar numbers of Fos-IR cells in the VNO neuroepithelium of oil-treated male and female subjects; however, EB-treated females had significantly more Fos-IR neurons in the VNO than any other group. There was an equivalent neuronal Fos response to male odors in the mitral and granule cells of the anterior and posterior accessory olfactory bulb of males and females, regardless of hormone treatment. In central portions of the VNO projection pathway (i.e., bed nucleus of the stria terminalis, medial preoptic area) neuronal Fos responses to male pheromones were present in female but absent in male subjects, regardless of hormone treatment. In a separate experiment, mating induced neuronal Fos-IR in these brain regions at levels in gonadally intact male subjects which were equal to or greater than those seen in ovariectomized females primed with estrogen and progesterone. This suggests that neurons in the central portions of the male's VNO pathway are capable of expressing Fos. Our results suggest that sexually dimorphic central responses to pheromones exist in mice that may begin in the VNO neuroepithelium.  相似文献   

15.
The vomeronasal organ (VNO) of the mammal nose is specialized to detect pheromones. The presumed site of the chemosensory signal transduction of pheromones is the vomeronasal brush border of the VNO sensory epithelium, which has been shown to contain two different sets of microvilli: (i) the tall microvilli of supporting cells and (ii) the short microvilli of the chemoreceptive VNO neurons that branch and intermingle with the basal portions of the longer supporting cell microvilli. A key problem when studying the subcellular distribution of possible VNO signal transduction molecules at the light microscope level is the clear discrimination of immunosignals derived from dendritic microvilli of the VNO neurons and surrounding supporting cell structures. In the present study we therefore looked for cytoskeletal marker proteins, that might help to distinguish at the light microscope level between the two sets of microvilli. By immunostaining we found that the VNO dendritic microvilli can be selectively labelled with antibodies to the calcium-sensitive actin filament-bundling protein villin, whereas supporting cell microvilli contain the actin filament cross-linking protein fimbrin, but not villin. Useful cytoplasmic marker molecules for cellular discrimination were cytokeratin 18 for supporting cells and β-tubulin for dendrites of VNO neurons. A further finding was that the non-sensory epithelium of the rat VNO contains brush cells, a cell type that appears to be involved in certain aspects of chemoreception in the gut. Brush cells or other structures of the vomeronasal brush border did not contain α-gustducin.  相似文献   

16.
The vomeronasal organ (VNO) is known to play a major role in sexual behavior in many mammals. This study is the first report that the adult male ferret has a VNO, which is considerably smaller and morphologically different from the usually crescent-shaped epithelium in several mammalian species, particularly rodents. There were no differences in the size or structure of the ferret VNO between the mating season in spring and the sexually quiescent season in autumn, although plasma testosterone, testis size and brain size are dramatically increased in spring and behavior changes significantly. The histological data suggest that the VNO might be not as important a structure in male ferret sexual behavior as in rodents.  相似文献   

17.
In sheep and goats, exposure of seasonally anestrous females to sexually active males results in activation of luteinizing hormone (LH) secretion and synchronized ovulation. This phenomenon is named "the male effect" and seems to constitute a major factor in the control of reproductive events. This effect depends mostly on olfactory cues and is largely mimicked by exposure to male fleece only. In sheep, preventing the vomeronasal organ (VNO) from functioning does not affect the female responses to male odor suggesting that, unlike in rodents, the accessory olfactory system does not play the major role in the perception of this pheromonal cue. Female responses also seem to depend on previous experience, an effect that is not common for pheromones and renders this model of special interest. The aim of the present report is to summarize our current knowledge concerning the "male effect" and in particular to clarify the respective roles of the two olfactory systems in the processes involved in this effect.  相似文献   

18.
In anoestrous ewes, male chemosignals elicit rapid increases in luteinizing hormone (LH) secretion that can ultimately lead to ovulation. To assess the possible involvement of the accessory (vomeronasal) olfactory system in the mediation of those chemical cues, we destroyed this pathway by vomeronasal organ electrocauterization (Exp. I) and vomeronasal nerve section (Exp. II). Neither of these lesions inhibited the LH response of ewes to the odour of the male. These results suggest that the vomeronasal system is not necessary to mediate the neuroendocrine response of the ewe to the male odour. As both surgical methods spared the main olfactory system but destroyed the vomeronasal system, it is likely that the main olfactory system is involved in the LH response to chemical stimulation in sexually experienced ewes.  相似文献   

19.
A major sensory organ for the detection of pheromones by animals is the vomeronasal organ (VNO). Although pheromones control the behaviors of various species, the effect of pheromones on human behavior has been controversial because the VNO is not functional in adults. However, recent genetic, biochemical, and electrophysiological data suggest that some pheromone-based behaviors, including male sexual behavior in mice, are mediated through the main olfactory epithelium (MOE) and are coupled to the type 3 adenylyl cyclase (AC3) and a cyclic nucleotide-gated (CNG) ion channel. These recent discoveries suggest the provocative hypothesis that human pheromones may signal through the MOE.  相似文献   

20.
Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号