首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reovirus attaches to cellular receptors with the sigma1 protein, a fiber-like molecule protruding from the 12 vertices of the icosahedral virion. The crystal structure of a receptor-binding fragment of sigma1 reveals an elongated trimer with two domains: a compact head with a new beta-barrel fold and a fibrous tail containing a triple beta-spiral. Numerous structural and functional similarities between reovirus sigma1 and the adenovirus fiber suggest an evolutionary link in the receptor-binding strategies of these two viruses. A prominent loop in the sigma1 head contains a cluster of residues that are conserved among reovirus serotypes and are likely to form a binding site for junction adhesion molecule, an integral tight junction protein that serves as a reovirus receptor. The fibrous tail is mainly responsible for sigma1 trimer formation, and it contains a highly flexible region that allows for significant movement between the base of the tail and the head. The architecture of the trimer interface and the observed flexibility indicate that sigma1 is a metastable structure poised to undergo conformational changes upon viral attachment and cell entry.  相似文献   

2.
JAM-A belongs to a family of immunoglobulin-like proteins called junctional adhesion molecules (JAMs) that localize at epithelial and endothelial intercellular tight junctions. JAM-A is also expressed on dendritic cells, neutrophils, and platelets. Homophilic JAM-A interactions play an important role in regulating paracellular permeability and leukocyte transmigration across epithelial monolayers and endothelial cell junctions, respectively. In addition, JAM-A is a receptor for the reovirus attachment protein, sigma1. In this study, we used single molecular force spectroscopy to compare the kinetics of JAM-A interactions with itself and sigma1. A chimeric murine JAM-A/Fc fusion protein and the purified sigma1 head domain were used to probe murine L929 cells, which express JAM-A and are susceptible to reovirus infection. The bond half-life (t(1/2)) of homophilic JAM-A interactions was found to be shorter (k(off)(o) = 0.688 +/- 0.349 s(-1)) than that of sigma1/JAM-A interactions (k(off)(o) = 0.067 +/- 0.041 s(-1)). These results are in accordance with the physiological functions of JAM-A and sigma1. A short bond lifetime imparts a highly dynamic nature to homophilic JAM-A interactions for regulating tight junction permeability while stable interactions between sigma1 and JAM-A likely anchor the virus to the cell surface and facilitate viral entry.  相似文献   

3.
4.
During maintenance of L-cell cultures persistently infected with reovirus, mutations are selected in viruses and cells. Cells cured of persistent infection support growth of viruses isolated from persistently infected cultures (PI viruses) significantly better than that of wild-type (wt) viruses. In a previous study, the capacity of PI virus strain L/C to grow better than wt strain type 1 Lang (T1L) in cured cells was mapped genetically to the S1 gene (R. S. Kauffman, R. Ahmed, and B. N. Fields, Virology 131:79-87, 1983), which encodes viral attachment protein sigma1. To investigate mechanisms by which mutations in S1 confer growth of PI viruses in cured cells, we determined the S1 gene nucleotide sequences of L/C virus and six additional PI viruses isolated from independent persistently infected L-cell cultures. The S1 sequences of these viruses contained from one to three mutations, and with the exception of PI 2A1 mutations in each S1 gene resulted in changes in the deduced amino acid sequence of sigma1 protein. Using electrophoresis conditions that favor migration of sigma1 oligomers, we found that sigma1 proteins of L/C, PI 1A1, PI 3-1, and PI 5-1 migrated as monomers, whereas sigma1 proteins of wt reovirus and PI 2A1 migrated as oligomers. These findings suggest that mutations in sigma1 protein affecting stability of sigma1 oligomers are important for the capacity of PI viruses to infect mutant cells selected during persistent infection. Since no mutation was found in the deduced amino acid sequence of PI 2A1 sigma1 protein, we used T1L X PI 2A1 reassortant viruses to identify viral genes associated with the capacity of this PI virus to grow better than wt in cured cells. The capacity of PI 2A1 to grow better than T1L in cured cells was mapped to the S4 gene, which encodes outer-capsid protein sigma3. This finding suggests that in some cases, mutations in sigma3 protein in the absence of sigma1 mutations confer growth of PI viruses in mutant cells. To confirm the importance of the S1 gene in PI virus growth in cured cells, we used T1L X PI 3-1 reassortant viruses to genetically map the capacity of this PI virus to grow better than wt in cured cells. In contrast to our results using PI 2A1, we found that growth of PI 3-1 in cured cells was determined by the sigma1-encoding S1 gene. Given that the sigma1 and sigma3 proteins play important roles in reovirus disassembly, findings made in this study suggest that stability of the viral outer capsid is an important determinant of the capacity of reoviruses to adapt to host cells during persistent infection.  相似文献   

5.
Reoviruses are important models for studies of viral pathogenesis; however, the mechanisms by which these viruses produce cytopathic effects in infected cells have not been defined. In this report, we show that murine L929 (L) cells infected with prototype reovirus strains type 1 Lang (TIL) and type 3 Dearing (T3D) undergo apoptosis and that T3D induces apoptosis to a substantially greater extent than T1L. Using T1L x T3D reassortant viruses, we found that differences in the capacity of T1L and T3D to induce apoptosis are determined by the viral S1 gene segment, which encodes the viral attachment protein sigma 1 and the non-virion-associated protein sigma 1s. Apoptosis was induced by UV-inactivated, replication-incompetent reovirus virions, which do not contain sigma 1s and do not mediate its synthesis in infected cells. Additionally, T3D-induced apoptosis was inhibited by anti-reovirus monoclonal antibodies that inhibit T3D cell attachment and disassembly. These results indicate that sigma 1, rather than sigma 1s, is required for induction of apoptosis by the reovirus and suggest that interaction of virions with cell surface receptors is an essential step in this mechanism of cell killing.  相似文献   

6.
The recent characterization of an acetylcholine binding protein (AChBP) from the fresh water snail, Lymnaea stagnalis, shows it to be a structural homolog of the extracellular domain of the nicotinic acetylcholine receptor (nAChR). To ascertain whether the AChBP exhibits the recognition properties and functional states of the nAChR, we have expressed the protein in milligram quantities from a synthetic cDNA transfected into human embryonic kidney (HEK) cells. The protein secreted into the medium shows a pentameric rosette structure with ligand stoichiometry approximating five sites per pentamer. Surprisingly, binding of acetylcholine, selective agonists, and antagonists ranging from small alkaloids to larger peptides results in substantial quenching of the intrinsic tryptophan fluorescence. Using stopped-flow techniques, we demonstrate rapid rates of association and dissociation of agonists and slow rates for the alpha-neurotoxins. Since agonist binding occurs in millisecond time frames, and the alpha-neurotoxins may induce a distinct conformational state for the AChBP-toxin complex, the snail protein shows many of the properties expected for receptor recognition of interacting ligands. Thus, the marked tryptophan quenching not only documents the importance of aromatic residues in ligand recognition, but establishes that the AChBP will be a useful functional as well as structural surrogate of the nicotinic receptor.  相似文献   

7.
Reovirus attachment protein sigma1 mediates engagement of receptors on the surface of target cells and undergoes dramatic conformational rearrangements during viral disassembly in the endocytic pathway. The sigma1 protein is a filamentous, trimeric molecule with a globular beta-barrel head domain. An unusual cluster of aspartic acid residues sandwiched between hydrophobic tyrosines is located at the sigma1 subunit interface. A 1.75-A structure of the sigma1 head domain now reveals two water molecules at the subunit interface that are held strictly in position and interact with neighboring residues. Structural and biochemical analyses of mutants affecting the aspartic acid sandwich indicate that these residues and the corresponding chelated water molecules act as a plug to block the free flow of solvent and stabilize the trimer. This arrangement of residues at the sigma1 head trimer interface illustrates a new protein design motif that may confer conformational mobility during cell entry.  相似文献   

8.
Recent crystallographic studies have revealed a range of structural changes in the three-dimensional structure of endo-1,4-xylanase (XYNII) from Trichoderma reesei. The observed conformational changes can be described as snapshots of an open-close movement of the active site of XYNII. These structures were further analyzed in this study. In addition, a total of four 1 ns molecular dynamics (MD) simulations were performed representing different states of the enzyme. A comparison of the global and local changes found in the X-ray structures and the MD runs suggested that the simulations reproduced a similar kind of active site opening and closing as predicted by the crystal structures. The open-close movement was characterized by the use of distance difference matrixes and the Hingefind program (Wriggers and Schulten, Proteins 29:1–14, 1997) to be a ‘hinge-bending’ motion involving two large rigidly-moving regions and an extended hinge. This conformational feature is probably inherent to this molecular architecture and probably plays a role in the function of XYNII. Proteins 31:434–444, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Beta‐secretase 1 (BACE‐1) is an aspartyl protease implicated in the overproduction of β‐amyloid fibrils responsible for Alzheimer disease. The process of β‐amyloid genesis is known to be pH dependent, with an activity peak between solution pH of 3.5 and 5.5. We have studied the pH‐dependent dynamics of BACE‐1 to better understand the pH dependent mechanism. We have implemented support for graphics processor unit (GPU) accelerated constant pH molecular dynamics within the AMBER molecular dynamics software package and employed this to determine the relative population of different aspartyl dyad protonation states in the pH range of greatest β‐amyloid production, followed by conventional molecular dynamics to explore the differences among the various aspartyl dyad protonation states. We observed a difference in dynamics between double‐protonated, mono‐protonated, and double‐deprotonated states over the known pH range of higher activity. These differences include Tyr 71‐aspartyl dyad proximity and active water lifetime. This work indicates that Tyr 71 stabilizes catalytic water in the aspartyl dyad active site, enabling BACE‐1 activity.  相似文献   

10.
Wang SX  Esmon CT  Fletterick RJ 《Biochemistry》2001,40(34):10038-10046
The protease inhibitor ecotin fails to inhibit thrombin despite its broad specificity against serine proteases. A point mutation (M84R) in ecotin results in a 1.5 nM affinity for thrombin, 10(4) times stronger than that of wild-type ecotin. The crystal structure of bovine thrombin is determined in complex with ecotin M84R mutant at 2.5 A resolution. Surface loops surrounding the active site cleft of thrombin have undergone significant structural changes to permit inhibitor binding. Particularly, the insertion loops at residues 60 and 148 in thrombin, which likely mediate the interactions with macromolecules, are displaced when the complex forms. Thrombin and ecotin M84R interact in two distinct surfaces. The loop at residue 99 and the C-terminus of thrombin contact ecotin through mixed polar and nonpolar interactions. The active site of thrombin is filled with eight consecutive amino acids of ecotin and demonstrates thrombin's preference for specific features that are compatible with the thrombin cleavage site: negatively charged-Pro-Val-X-Pro-Arg-hydrophobic-positively charged (P1 Arg is in bold letters). The preference for a Val at P4 is clearly defined. The insertion at residue 60 may further affect substrate binding by moving its adjacent loops that are part of the substrate recognition sites.  相似文献   

11.
12.
Abstract

Adipocyte fatty acid binding protein (A-FABP) is a potential drug target for treatment of diabetes, obesity and atherosclerosis. Molecular dynamics (MD) simulations, principal component (PC) analysis and binding free energy calculations were combined to probe effect of electrostatic interactions of residues R78, R106 and R126 with inhibitors ZGB, ZGC and IBP on structural stability of three inhibitor/A-FABP complexes. The results indicate that mutation R126A produces significant influence on polar interactions of three inhibitors with A-FABP and these interactions are main force for driving the conformational change of A-FABP. Analyses on hydrogen bond interactions show that the decrease in hydrogen bonding interactions of residues R126 and Y128 with three inhibitors and the increase in that of K58 with inhibitors ZGC and IBP in the R126A mutated systems mostly regulate the conformational changes of A-FABP. This work shows that R126A can generate a significant perturbation on structural stability of A-FABP, which implies that R126 is of significance in inhibitor bindings. We expect that this study can provide a theoretical guidance for design of potent inhibitors targeting A-FABP.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
Human paraoxonase 1 (huPON1) is a calcium-dependent esterase responsible for hydrolysis of a wide variety of substrates including organophosphates, esters, lactones, and paraoxon. Although its natural substrate is unknown, the action of PON as an antioxidant is well documented. Because recent reports have suggested glycation may induce reduced PON activity in diabetes, we investigated the structural features of huPON1 and its glycated mutant by template-based modeling, docking, and molecular dynamics (MD) simulations. Our results corroborated the importance of the His115–His134 dyad in both the lactonase and paraoxonase activity of huPON1. Structural alterations in the glycated model reflected weak interactions between the docked substrate and the active site cleft. We also used MD simulation to gain insight into glycation-induced conformational changes of huPON1 and the implication of this on depleted enzymatic activity. The catalytic calcium found on the surface interacts with the side chain oxygen of residues, including Asn224, Asn270, Asn168, Asp269, and Glu53, and this interaction with the respective residues undergoes minor displacement on glycation. The root-mean-square fluctuation had high motional flexibility in the non-glycated model whereas the conformation of the glycated structure was comparatively stable. Our findings emphasize the consequence of glycation-induced alterations and their effect on overall enzymatic activity.  相似文献   

14.
Association of the reovirus proteins sigma 3 and mu 1 influences viral entry, initiation of outer capsid assembly, and modulation of the effect of sigma 3 on cellular translation. In this study, we have addressed whether structural changes occur in sigma 3 as a result of its interaction with mu 1. Using differences in protease sensitivity to detect conformationally distinct forms of sigma 3, we showed that association of sigma 3 with mu 1 caused a conformational change in sigma 3 that converted it from a protease-resistant to a protease-sensitive structure and occurred posttranslationally. The effect of mu 1 on the structure of sigma 3 was stoichiometric. Our results are consistent with a model in which sigma 3's association with mu 1 shifts its function from translational control to assembly of an outer capsid in which sigma 3 is folded into the protease-sensitive conformation that is required for its cleavage during the next round of infection.  相似文献   

15.
Insulin plays a central role in the regulation of metabolism in humans. Mutations in the insulin gene can impair the folding of its precursor protein, proinsulin, and cause permanent neonatal‐onset diabetes mellitus known as Mutant INS‐gene induced Diabetes of Youth (MIDY) with insulin deficiency. To gain insights into the molecular basis of this diabetes‐associated mutation, we perform molecular dynamics simulations in wild‐type and mutant (CysA7 to Tyr or C(A7)Y) insulin A chain in aqueous solutions. The C(A7)Y mutation is one of the identified mutations that impairs the protein folding by substituting the cysteine residue which is required for the disulfide bond formation. A comparative analysis reveals structural differences between the wild‐type and the mutant conformations. The analyzed mutant insulin A chain forms a metastable state with major effects on its N‐terminal region. This suggests that MIDY mutant involves formation of a partially folded intermediate with conformational change in N‐terminal region in A chain that generates flexible N‐terminal domain. This may lead to the abnormal interactions with other proinsulins in the aggregation process. Proteins 2015; 83:662–669. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
J R Somoza  J W Brady 《Biopolymers》1988,27(6):939-956
Molecular dynamics simulations have been used to study the conformational fluctuations of the oligopeptide hormone vasopressin. Starting coordinates for these simulations were built upon the crystal structure of pressinoic acid, the cyclic ring moiety of vasopressin, recently determined by x-ray diffraction. Coordinates for the additional tripeptide “tail” of vasopressin were selected by arbitrary positioning of this segment using interactive computer graphics. Two such starting configurations were minimized to relax strains, and long dynamics simulations (20 and 40 ps) in vacuo were then conducted following extensive heating and equilibration sequences (36 ps). In these studies, vasopressin was found to undergo few substantial conformational changes at 300 K on the time scale simulated, in contrast to the results of a shorter previous simulation, but comparable structural transitions were observed during the equilibration periods. The pressinoic acid structure was found to be a reasonably stable possible conformation for vasopressin in vacuum on this time scale.  相似文献   

17.
18.
Large-scale conformational changes in proteins that happen often on biological time scales may be relatively rare events on the molecular dynamics time scale. We have implemented an approach to targeted molecular dynamics called end-point targeted molecular dynamics that transforms proteins between two specified conformational states through the use of nonharmonic “soft” restraints. A key feature of the method is that the protein is free to discover its own conformational pathway through the plethora of possible intermediate states. The method is applied to the Shaker Kv1.2 potassium channel in implicit solvent. The rate of cycling between the open and closed states was varied to explore how slow the cycling rate needed to be to ensure that microscopic reversibility along the transition pathways was well approximated. Results specific to the K+ channel include: 1), a variation in backbone torsion angles of residues near the Pro-Val-Pro motif in the inner helix during both opening and closing; 2), the identification of possible occlusion sites in the closed channel located among Pro-Val-Pro residues and downstream; 3), a difference in the opening and closing pathways of the channel; and 4), evidence of a transient intermediate structural substate. The results also show that likely intermediate conformations during the opening-closing process can be generated in computationally tractable simulation times.  相似文献   

19.
The immunoglobulin binding protein, segment B1 of protein G, has been studied experimentally as a paradigm for protein folding. This protein consists of 56 residues, includes both β sheet and α helix and contains neither disulfide bonds nor proline residues. We report an all-atom molecular dynamics study of the native manifold of the protein in explicit solvent. A 2-ns simulation starting from the nuclear magnetic resonance (NMR) structure and a 1-ns control simulation starting from the x-ray structure were performed. The difference between average structures calculated over the equilibrium portion of trajectories is smaller than the difference between their starting conformations. These simulation averages are structurally similar to the x-ray structure and differ in systematic ways from the NMR-determined structure. Partitioning of the fluctuations into fast (<20 ps) and slow (<20 ps) components indicates that the β sheet displays greater long-time mobility than does the α helix. Clore and Gronenborn [J. Mol. Biol. 223:853–856, 1992] detected two long-residence water molecules by NMR in a solution structure of segment B1 of protein G. Both molecules were found in the fully exposed regions and were proposed to be stabilized by bifurcated hydrogen bonds to the protein backbone. One of these long-residence water molecules, found near an exposed loop region, is identified in both of our simulations, and is seen to be involved in the formation of a stable water-mediated hydrogen bond bridge. The second water molecule, located near the middle of the α helix, is not seen with an exceptional residence time in either as a result of the conformation being closer to the x-ray structure in this region of the protein. Proteins 29:193–202, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号